TY - JOUR A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Wolff, Dietmar T1 - A new method to evaluate the low temperature function of rubber sealing materials N2 - A new method for the evaluation of the low temperature properties of rubber materials is presented. The method emulates the standardized compression set measurement, which is frequently used for sealing materials, but can be performed within a considerably shorter time. The results are compared with the standard test and found to be qualitatively the same. Slight differences are discussed on the basis of the differences in the measurement procedures. Further data evaluation is done by fitting functions to describe the material behaviour. KW - Sealing material KW - Elastomer KW - Compression set KW - Dynamic mechanical analysis KW - Low temperature behaviour PY - 2010 DO - https://doi.org/10.1016/j.polymertesting.2010.07.006 SN - 0142-9418 VL - 29 IS - 7 SP - 815 EP - 823 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-21914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Buchholz, Uwe A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Habel, Wolfgang A1 - Petersson, B.A.T. T1 - Acoustic data of cross linked polyethylene (XLPE) and cured liquid silicone rubber (LSR) by means of ultrasonic and low frequency DMTA N2 - Partial discharges may cause damage to electrical insulation of high voltage equipment. They initiate elastic waves in the insulating material, e.g. in the stress cone of an outdoor termination. Localisation of the origin of such elastic waves can help to predict serious damaging processes in the electrical insulation. In order to measure and evaluate the wave propagation effects in typical multilayered elastomeric structures, knowledge of the material properties is required. The propagating velocity and the attenuation of longitudinal waves are important parameters. Values for these quantities found in the literature were not appropriate. Therefore, for cross-linked polyethylene (XLPE) and cured liquid silicone rubber (LSR), the longitudinal wave velocity and the attenuation were evaluated in the temperature interval from -20°C to 50°C and in the frequency range from 200 kHz to 600 kHz using a two-sample ultrasound technique. The loss factor was determined from these measured quantities. Additionally, low frequency Dynamic Mechanical Thermal Analysis (DMTA) was applied to investigate LSR and XLPE in a temperature interval between -100 and 50°C and to check qualitatively the ultrasound data. KW - Acoustic propagation KW - Cross linked polyethylene insulation KW - Mechanical variables measurement KW - Silicone rubber PY - 2012 DO - https://doi.org/10.1109/TDEI.2012.6180250 SN - 1070-9878 SN - 0018-9367 SN - 1558-4135 VL - 19 IS - 2 SP - 558 EP - 566 PB - Institute of Electrical and Electronics Engineers CY - New York, NY AN - OPUS4-26106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cappella, Brunero A1 - Stark, Wolfgang T1 - Adhesion of amorphous polymers as a function of temperature probed with AFM force-distance curves N2 - Force–displacement curves have been obtained with a commercial atomic force microscope at different temperatures and probe rates on a thick film of poly(n-butyl methacrylate) and on two films of polystyrene with different molecular weight. In a previous publication [B. Cappella, S.K. Kaliappan, H. Sturm, Macromolecules 38 (2005)1874] the analysis of force–displacement curves has been focused on the stiffness and on the Young's modulus of the samples. In the present publication we consider the temperature dependence of the work of adhesion. We have obtained master curves of the work of adhesion at fixed maximum loads and, by comparing the results of the two analysis, we show that the work of adhesion follows the Williams–Landel–Ferry equation with the same coefficients previously found for the Young's modulus. Furthermore, we show that the temperature dependence of the work of adhesion of the polymers is a consequence of the temperature dependence of the tip–sample contact area and in the end of the temperature dependence of the stiffness and of the elastic–plastic properties of the samples. KW - Atomic force microscope KW - Force-distance curves KW - Indentation KW - Elastic-plastic properties KW - Adhesion KW - Time-temperature superposition principle KW - Glass transition temperature PY - 2005 DO - https://doi.org/10.1016/j.jcis.2005.09.043 SN - 0021-9797 SN - 1095-7103 SP - 1 EP - 8(?) PB - Elsevier CY - Orlando, Fla. AN - OPUS4-11187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stark, Wolfgang A1 - Jaunich, Matthias A1 - McHugh, J. T1 - Carbon-fibre epoxy prepreg (CFC) curing in an autoclave analogue process controlled by dynamic mechanical analysis (DMA) N2 - Carbon fibre prepregs have found widespread application in lightweight constructions. They are based on a carbon-fibre fabric impregnated with reactive epoxy resin. DMA measurements under temperature conditions similar to an autoclave programme were carried out using commercially available prepreg material with a high glass transition temperature. The characteristic of the temperature programme was a dynamic heating segment at 1.5 K/min followed by a longer isothermal segment at 180 °C. The courses of the storage modulus E', loss modulus E'' and tanδ were recorded. The measuring frequency was varied between 1 Hz and 33.3 Hz. Gelation and vitrification are assigned. The influence of the measuring frequency on the time to vitrification and the correlation with DSC are discussed. The reaction does not end even after 10 h curing at 180 °C, which is interpreted as the slow cessation of the reaction caused by vitrification. KW - Prepreg KW - CFC KW - Curing KW - DMA KW - DSC KW - Autoclave KW - Gelation KW - Vitrification KW - Glass transition PY - 2013 DO - https://doi.org/10.1016/j.polymertesting.2013.09.014 SN - 0142-9418 VL - 32 IS - 8 SP - 1487 EP - 1494 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-29479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bovtun, Viktor Petrovic A1 - Stark, Wolfgang A1 - Kelm, Jürgen A1 - Pashkov, V.M. A1 - Yakimenko, Y. T1 - Characterization of carbon black filled rubber compounds by the Microwave Coaxial Method KW - Dielectric parameters KW - Microwave methods KW - Filled rubber compounds KW - Vulcanisation PY - 2005 SN - 0025-5300 VL - 47 IS - 3 SP - 118 EP - 122 PB - Carl Hanser Verlag CY - München AN - OPUS4-7273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Wolff, Dietmar T1 - Comparison of low temperature properties of different elastomer materials investigated by a new method for compression set measurement N2 - The method for the determination of compression set values with a Dynamic Mechanical Analysis (DMA) setup at low temperatures, which was presented previously, allows a much faster and readily automated procedure than the standardized compression set test according to ISO 815-2. This method is applied to a series of different elastomeric materials that are commonly used for sealing applications. The results of the compression set test are compared with results from thermal analysis to allow an in depth comparison of the material behaviour at low temperatures. Furthermore, a comparison between two EPDM materials is presented. These materials show very similar properties determined by thermo analytical methods such as Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) but differ clearly in their compression set behaviour. This comparison shows the importance and value of information of the compression set test in addition to thermal analysis to judge the behaviour of sealing materials and confirms the relevance of the new compression set test method for the investigation of low temperature properties of elastomers. KW - Sealing material KW - Elastomer KW - Compression set KW - Dynamic mechanical analysis KW - Low temperature behaviour PY - 2012 DO - https://doi.org/10.1016/j.polymertesting.2012.07.016 SN - 0142-9418 VL - 31 IS - 8 SP - 987 EP - 992 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-26538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Döring, Joachim A1 - Stark, Wolfgang A1 - Bartusch, Jürgen A1 - Mc Hugh, Jarlath T1 - Contribution to ultrasound cure control for composite manufacturing N2 - The curing conditions play an important role in the quality assurance of composite products. Especially as composite materials are widely used in high tech areas so that they are required to fulfil high quality Standards. Some problems which occur during curing, for instance undercuring, can hardly be detected using Standard NDT investigations, mainly because they are manifested only at high temperatures, particularly close to glass-rubber-transition. On-line eure monitoring has the outstanding advantage that it can monitor the material parameters even at the highest temperatures possible. In recent years eure monitoring with ultrasonic methods has become more populär. In comparison to dielectric methods mechanical parameters are measured directly. The quantities to be measured are the velocity and the attenuation of the sound wave. On this basis the storage and loss modulus can be calculated. Depending on the form of excitation with longitudinal or transversal waves these moduli are referred to as long wave or shear modulus. Well developed Computer based technology and sensor materials are available in the non-destructive testing (NDT) market. The measuring equipment employed a commercial NDT System, which worked computer-aided. With a special Software the demands of automatic Operation under industrial conditions was accomplished. This measurement equipment was tested on composites. Its structure, performance and some practical results will be presented in the following paper. T2 - 15th World Conference on Non-Destructive Testing (WCNDT) CY - Roma, Italy DA - 15.10.2000 PY - 2000 UR - http://www.ndt.net/article/wcndt00/papers/idn482/idn482.htm SN - 1435-4934 VL - 5 IS - 11 PB - NDT.net CY - Kirchwald AN - OPUS4-2136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fengler, Petra A1 - Stark, Wolfgang A1 - Döring, Joachim A1 - Mc Hugh, Jarlath T1 - Coupling of hidden ultrasound sensors to a moulding tool N2 - Ultrasound on-line NDT methods have been demonstrated as a useful tool for monitoring the curing reaction of thermosets. In order to achieve this ultrasound sensors are incorporated into compression, injection and RTM (resin transfer) mould. For many commercial products imprints or any surface markings upon the moulded product are undesirable. Due to its physical properties ultrasound has a large advantage over other techniques for similar applications. The sound wave can pass through the wall of the mould and direct contact with the moulded part is not required. In this particular case one fundamental problem is a good coupling of the sensors to the mould wall. Several mediums came into question but because of the high technical (e. g. temperature and long time stability) and practical demands, it was decided that dry (non-fluid) coupling would be the most promising candidate. A handful of coupling foils suitable also at high temperatures and for long time application under industrial conditions were tested and are presented in this paper. KW - Sensors KW - Ultrasound KW - Mould wall coupling KW - Thermoset manufacturing PY - 2004 UR - http://www.ndt.net/article/v09n03/stark/stark.htm SN - 1435-4934 VL - 9 IS - 3 SP - 1 EP - 10 PB - NDT.net CY - Kirchwald AN - OPUS4-3316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stark, Wolfgang A1 - Döring, Joachim A1 - Walentowski, Heinz-Ulrich T1 - Crosslinking Instead of Glassy Transition N2 - In processing fibre-reinforced composites, the curing reaction can be significantly retarded if the temperature and reaction time are not optimally set. In such situations, complete curing is sometimes impossible under practically relevant conditions. It is difficult for processors to recognize or detect incomplete curing. The equilibrium glass transition temperature plays an important role in complete curing in the production process. PY - 2000 SN - 0945-0084 VL - 90 IS - 4 SP - 33 EP - 35 PB - Hanser CY - München AN - OPUS4-822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Brademann-Jock, Kerstin A1 - Stark, Wolfgang T1 - Cure monitoring of epoxy films by heatable in situ FTIR analysis: Correlation to composite parts N2 - The curing mechanism of an epoxy film containing dicyandiamide (DICY) and an epoxy formulation based on diglycidyl ether of Bisphenol A (DGEBA) polymer was studied as a function of various temperature programs. The investigation was performed in situ, using a thin film of the epoxy mixture on a silicon wafer substrate in a heatable transmission tool of a FTIR spectrometer. Based on these model-curing experiments, a major curing mechanism was proposed, taking into account the appearance, the decrease, and the development of characteristic bands at various temperatures. The conclusions of the model curing were correlated to FTIR measurements on a real, 50-mm-thick glass fiber reinforced component composite part from a technical process. It could be shown that characteristic bands that develop at curing temperatures above 150°C appear especially in the center of the thick sample. From the chemical or molecular point of view, this demonstrates the established technician's understanding that temperature control inside a large-scale fiber composite of, for example, aircraft, wind-turbine, automotive applications component is of major importance. KW - Crosslinking KW - Resins KW - Spectroscopy KW - Thermosets KW - Thermal properties PY - 2014 DO - https://doi.org/10.1002/APP.39832 SN - 0021-8995 SN - 1097-4628 VL - 131 IS - 3 SP - 39832, 1 EP - 10 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-30716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stark, Wolfgang A1 - Jaunich, Matthias A1 - McHugh, J. T1 - Cure state detection for pre-cured carbon-fibre epoxy prepreg (CFC) using temperature-modulated differential scanning calorimetry (TMDSC) N2 - Carbon-fibre prepregs have found widespread use in lightweight applications. They are based on a carbon-fibre fabric impregnated with reactive epoxy resin. Prepreg materials are generally pre-cured so that they have a higher molecular weight than typical resins in order to reduce resin flow, which facilitates storage and later processing properties. The measurements were carried out using commercially available materials and follow the published DMA investigations of the same material. TMDSC was used to find the correlation between curing conditions, the degree of cure and glass transition temperature. TMDSC has the advantage over standard DSC that it enables better determination of the glass transition temperature, which is often accompanied by an exothermic curing reaction, and thus overshadowed. The influence of the amplitude of temperature modulation was tested in preliminary experiments. For non-cured material a glass transition temperature of approximately 0 °C was determined; whereas for the totally cured material it was approximately 230 °C. The changes in degree of cure, temperature of actual glass transition and post-reaction are given as a function of curing time at 180 °C. The correlation between actual glass transition temperature and degree of cure is derived. KW - Prepreg KW - Carbon fibre KW - Glass transition KW - Degree of curing KW - DSC KW - TMDSC PY - 2013 DO - https://doi.org/10.1016/j.polymertesting.2013.07.007 SN - 0142-9418 VL - 32 IS - 7 SP - 1261 EP - 1272 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-29067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - McHugh, Jarlath A1 - Stark, Wolfgang T1 - Determination and interpretation of changes in thermophysical properties of a carbon-fibre prepreg during cure N2 - Epoxy composites used for high-end structural applications are typically cured under the influence of temperature and pressure causing a number of complex chemical and physical transformations. On heating a mould, temperature gradients will occur through the component which will depend largely on the thermophysical properties of the specific composite. The crosslinking reaction is exothermic leading to additional heat release, thus complicating heat transportation models. If such effects are not accounted for, it can lead to variations in resin flow, poor fibre wetting causing voiding and inhomogeneous cure, leading to shrinkage and unfavourable variations in moulded part geometry. Limited information is available for thermal models used in the manufacture of reinforced thermosets. Autoclave [1, 2] and laser or infra-red curing processes [3, 4] typically use constant values determined on fully cured parts. In this work, the variation in thermal conductivity (K) (W/(m K)), thermal diffusivity (a) (m(2)/s) and specific heat capacity at constant pressure (c(p)) (J/(g K) is determined for a carbon fibre prepreg during cure. It is the intention to improve understanding of how these parameters are related to chemical or physical transformations occurring during cure, and where estimates or shortcuts may be used for heat transfer models KW - Differential scanning calorimetry KW - Temerature KW - Epoxy system PY - 2016 DO - https://doi.org/10.1016/j.polymertesting.2015.11.015 SN - 0142-9418 VL - 49 SP - 115 EP - 120 PB - Elsevier Science CY - Oxford AN - OPUS4-35788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mc Hugh, Jarlath A1 - Fideu, P. A1 - Herrmann, A. A1 - Stark, Wolfgang T1 - Determination and review of specific heat capacity measurements during isothermal cure of an epoxy using TM-DSC and standard DSC techniques N2 - The technique normally used to measure Cp during isothermal cure is Temperature Modulated - Dynamic Scanning Calorimetry TM-DSC. It is however not standardised, experimentally complicated and quite time intensive. As will be shown, Cp may also be estimated during isothermal cure just from using dynamic heating experiments on a fully cured sample. Such values are often sufficient for isothermal heat transfer models that otherwise employ a constant Cp value obtained from the fully cured epoxy. Secondly, the results from dynamic heating experiments provide a quick means, in comparison to isothermal TMDSC measurements, of estimating Cp variation during cure as well as providing a good estimate value for Cp towards the end of isothermal cure. As will be shown, such values obtained from a standardised measurement procedure are very helpful in setting up TMDSC experiments that are more sensitive to experimental error influenced by factors such as sample weight and geometry. The DSC results illustrate that the measured heat capacity Cp for a fully cured epoxy over a temperature range are very similar to values for samples partially cured at corresponding isothermal temperatures, under the prerequisite that vitrification takes place. In such cases the primary influence on Cp is specific measurement temperature and not degree of cure. For isothermal cure temperatures investigated between 150 and 200 °C, the total change of Cp during cure is nearly constant and correlates well with values published by authors on other epoxy based systems. Taking Cp variation as constant, it is possible from just dynamic heating experiments on the cured epoxy to estimate Cp for the uncured epoxy system at specific cure temperatures. The next step would be to estimate the full Cp profile during isothermal cure, however, in such cases, the time to vitrification would also be needed as additional information. PY - 2010 DO - https://doi.org/10.1016/j.polymertesting.2010.04.004 SN - 0142-9418 VL - 29 IS - 6 SP - 759 EP - 765 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-21916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stark, Wolfgang T1 - Development of quality assurance for insulating materials PY - 2010 UR - https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjyyejZ7tvKAhXBVxoKHeV0Dr4QFgghMAA&url=https%3A%2F%2Fwww.kunststoffe.de%2Fen%2F_storage%2Fasset%2F590842%2Fstorage%2Fmaster%2Ffile%2F6128237%2Fdownload%2FDevelopment%2520of%2520Quality%2520Assurance%2520for%2520Insulating%2520Materials.pdf&usg=AFQjCNGMbKTaYDrHEdGuZ2IB_7zQCrTVkw SN - 1862-4243 VL - 100 IS - 2 SP - 6 EP - 9 PB - Hanser CY - München AN - OPUS4-20936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stark, Wolfgang A1 - Jaunich, Matthias A1 - Mc Hugh, Jarlath T1 - Dynamic mechanical analysis (DMA) of epoxy carbon-fibre prepregs partially cured in a discontinued autoclave analogue process N2 - Epoxy carbon-fibre prepreg, Hexcel Type 6376 HTS, was investigated using Dynamic Mechanical Analysis (DMA). The DMA characteristic parameters are storage modulus E', loss modulus E' and loss factor tanδ. These parameters are ideally suited to observe the vitrification, referred to as glass transition, resulting from the cross-linking reaction. Detection of the cure state may also be achieved by determining the momentary glass transition temperature of partially cured samples. The consequent use of a multi-frequency measuring regime was used to derive the apparent activation energy for the glass transition process. Different temperature programs were also applied to monitor the curing process directly, as well as to investigate the different states of incomplete cure reached in preceding curing steps. The intention was to provide better understanding of the consequences of an interrupted autoclave curing process and to use DMA to detect the cure state achieved. With DMA, the continuation of an incomplete curing process also can be monitored. DMA measurements up to 300 °C showed, furthermore, that the final glass transition temperature was reduced by thermal degradation at high temperatures. KW - Composites KW - Epoxy KW - Cross-linking KW - Prepreg KW - Degree of cure KW - Glass transition PY - 2015 DO - https://doi.org/10.1016/j.polymertesting.2014.11.004 SN - 0142-9418 VL - 41 SP - 140 EP - 148 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-32325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böhning, Martin A1 - Niebergall, Ute A1 - Adam, Adeline A1 - Stark, Wolfgang T1 - Impact of biodiesel sorption on mechanical properties of polyethylene N2 - The time-dependent sorption of biodiesel in a typical polyethylene for container applications is investigated in comparison to conventional diesel fuel at three different temperatures. In this context, the desorption behavior is also addressed. Subsequently, the effects of both penetrants on mechanical properties are characterized in terms of impact strength and dynamic-mechanical analysis. The discussion of property changes is firstly based on the sorption kinetics of biodiesel and diesel, which is determined by immersion experiments allowing for the calculation of respective diffusion coefficients. Changes in impact strength as determined by the Charpy method are further characterised in more detail by analyzing the fracture surfaces, and correlated with results of dynamic-mechanical analysis. KW - Biodiesel KW - Fuel sorption KW - Desorption KW - Impact strength KW - Dynamic-mechanical analysis KW - PE-HD PY - 2014 DO - https://doi.org/10.1016/j.polymertesting.2013.12.003 SN - 0142-9418 VL - 34 SP - 17 EP - 24 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-30096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böhning, Martin A1 - Niebergall, Ute A1 - Adam, Adeline A1 - Stark, Wolfgang T1 - Influence of biodiesel sorption on temperature-dependent impact properties of polyethylene N2 - In a previous paper we investigated the influence of sorbed biodiesel or diesel on mechanical properties of a typical polyethylene grade for tank applications. Besides the basic sorption and desorption behavior of these two fuels, the study addressed the concentration-dependent mechanical properties as revealed by a non-instrumented Charpy impact test and dynamic mechanical analysis (DMA). In the present paper we extend this investigation focusing on the temperature-dependent impact fracture behavior. Therefore, an instrumented Charpy impact test was employed, allowing a more detailed analysis of the fracture behavior. Furthermore, from the load-time-diagrams obtained from the instrumented impact test, corresponding fracture times can be calculated, allowing a clear correlation of the fuel sorption induced changes in fracture toughness with the enhanced ß-relaxation observed by DMA. As in the previous study, the fracture surfaces of the impact tested specimens were analyzed in order to confirm the brittle or ductile character of the fracture indicated by impact strength and the corresponding load-deflection diagrams. KW - Biodiesel KW - Fuel sorption KW - Impact strength KW - Charpy impact test KW - Dynamic-mechanical analysis KW - Relaxation KW - PE-HD PY - 2014 DO - https://doi.org/10.1016/j.polymertesting.2014.09.001 SN - 0142-9418 VL - 40 SP - 133 EP - 142 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-31583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stark, Wolfgang T1 - Investigation of curing behaviour of melamine/phenolic (MP) thermosets N2 - Commercially available melamine/phenolic (MP) moulding compounds used for manufacturing electro installation parts were investigated by laboratory thermal analysis methods: Dynamic Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC) and Dielectric Analysis (DEA). The results were compared with on-line measurements in a compression mould using incorporated dielectric and ultrasound sensors. Softening and cross-linking behaviour were analyzed. For on-line process monitoring, only the ultrasound method worked well. The dielectric method was distorted by water formed as a by-product from the poly-condensation reaction. KW - Thermoset KW - Melamine KW - Phenol KW - Moulding compound KW - Cross-linking KW - DSC PY - 2010 DO - https://doi.org/10.1016/j.polymertesting.2010.05.008 SN - 0142-9418 VL - 29 IS - 6 SP - 723 EP - 728 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-20982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stark, Wolfgang A1 - Jaunich, Matthias T1 - Investigation of ethylene/vinyl acetate copolymer (EVA) by thermal analysis DSC and DMA N2 - Two types of commercially applied Ethylene/Vinyl Acetate Copolymers (EVA) for encapsulation of photovoltaic modules were investigated by the thermal analysis methods of Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) in the temperature range from -150 °C to 200 °C. Glass transition, crystal melting and cross-linking were analyzed. The aims of the investigations were to gain more information for incoming goods control and to get information about the whole temperature dependent material properties in the investigated temperature range, starting at very low temperatures up to the crosslinking temperature region. KW - EVA KW - Thermal analysis KW - DSC KW - DMA KW - Glass transition KW - Crystal melting KW - Cross-linking PY - 2011 DO - https://doi.org/10.1016/j.polymertesting.2010.12.003 SN - 0142-9418 VL - 30 IS - 2 SP - 236 EP - 242 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-23206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stark, Wolfgang A1 - Jaunich, Matthias A1 - Bohmeyer, W. A1 - Lange, K. T1 - Investigation of the crosslinking behaviour of ehtylene vinyl acetate (EVA) for solar cell encapsulation by rheology and ultrasound N2 - EVA is a widely used material for the encapsulation of photovoltaic modules. It melts at elevated temperatures, and seals the module before it is crosslinked at temperatures above 130 °C by a peroxide-initiated crosslinking reaction. EVA has good optical properties necessary for application in solar modules. For process optimization and quality management, a method for the quick and reliable characterization of EVA crosslinking behaviour is of great value. Here, the practicability of ultrasound for online crosslinking monitoring is demonstrated. A sound velocity increase of about 8 m/s during the crosslinking reaction is found. The ultrasound results are compared with rheometer measurements performed with a curemeter typically used for the investigation of rubber crosslinking. KW - Ethylene vinyl acetate KW - EVA KW - Crosslinking KW - Ultrasound KW - Rheology KW - Curemeter KW - DSC PY - 2012 DO - https://doi.org/10.1016/j.polymertesting.2012.07.004 SN - 0142-9418 VL - 31 IS - 7 SP - 904 EP - 908 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-26291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -