TY - JOUR A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Wolff, Dietmar T1 - A new method to evaluate the low temperature function of rubber sealing materials N2 - A new method for the evaluation of the low temperature properties of rubber materials is presented. The method emulates the standardized compression set measurement, which is frequently used for sealing materials, but can be performed within a considerably shorter time. The results are compared with the standard test and found to be qualitatively the same. Slight differences are discussed on the basis of the differences in the measurement procedures. Further data evaluation is done by fitting functions to describe the material behaviour. KW - Sealing material KW - Elastomer KW - Compression set KW - Dynamic mechanical analysis KW - Low temperature behaviour PY - 2010 U6 - https://doi.org/10.1016/j.polymertesting.2010.07.006 SN - 0142-9418 VL - 29 IS - 7 SP - 815 EP - 823 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-21914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mc Hugh, Jarlath A1 - Fideu, P. A1 - Herrmann, A. A1 - Stark, Wolfgang T1 - Determination and review of specific heat capacity measurements during isothermal cure of an epoxy using TM-DSC and standard DSC techniques N2 - The technique normally used to measure Cp during isothermal cure is Temperature Modulated - Dynamic Scanning Calorimetry TM-DSC. It is however not standardised, experimentally complicated and quite time intensive. As will be shown, Cp may also be estimated during isothermal cure just from using dynamic heating experiments on a fully cured sample. Such values are often sufficient for isothermal heat transfer models that otherwise employ a constant Cp value obtained from the fully cured epoxy. Secondly, the results from dynamic heating experiments provide a quick means, in comparison to isothermal TMDSC measurements, of estimating Cp variation during cure as well as providing a good estimate value for Cp towards the end of isothermal cure. As will be shown, such values obtained from a standardised measurement procedure are very helpful in setting up TMDSC experiments that are more sensitive to experimental error influenced by factors such as sample weight and geometry. The DSC results illustrate that the measured heat capacity Cp for a fully cured epoxy over a temperature range are very similar to values for samples partially cured at corresponding isothermal temperatures, under the prerequisite that vitrification takes place. In such cases the primary influence on Cp is specific measurement temperature and not degree of cure. For isothermal cure temperatures investigated between 150 and 200 °C, the total change of Cp during cure is nearly constant and correlates well with values published by authors on other epoxy based systems. Taking Cp variation as constant, it is possible from just dynamic heating experiments on the cured epoxy to estimate Cp for the uncured epoxy system at specific cure temperatures. The next step would be to estimate the full Cp profile during isothermal cure, however, in such cases, the time to vitrification would also be needed as additional information. PY - 2010 U6 - https://doi.org/10.1016/j.polymertesting.2010.04.004 SN - 0142-9418 VL - 29 IS - 6 SP - 759 EP - 765 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-21916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stark, Wolfgang T1 - Development of quality assurance for insulating materials PY - 2010 UR - https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjyyejZ7tvKAhXBVxoKHeV0Dr4QFgghMAA&url=https%3A%2F%2Fwww.kunststoffe.de%2Fen%2F_storage%2Fasset%2F590842%2Fstorage%2Fmaster%2Ffile%2F6128237%2Fdownload%2FDevelopment%2520of%2520Quality%2520Assurance%2520for%2520Insulating%2520Materials.pdf&usg=AFQjCNGMbKTaYDrHEdGuZ2IB_7zQCrTVkw SN - 1862-4243 VL - 100 IS - 2 SP - 6 EP - 9 PB - Hanser CY - München AN - OPUS4-20936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stark, Wolfgang T1 - Investigation of curing behaviour of melamine/phenolic (MP) thermosets N2 - Commercially available melamine/phenolic (MP) moulding compounds used for manufacturing electro installation parts were investigated by laboratory thermal analysis methods: Dynamic Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC) and Dielectric Analysis (DEA). The results were compared with on-line measurements in a compression mould using incorporated dielectric and ultrasound sensors. Softening and cross-linking behaviour were analyzed. For on-line process monitoring, only the ultrasound method worked well. The dielectric method was distorted by water formed as a by-product from the poly-condensation reaction. KW - Thermoset KW - Melamine KW - Phenol KW - Moulding compound KW - Cross-linking KW - DSC PY - 2010 U6 - https://doi.org/10.1016/j.polymertesting.2010.05.008 SN - 0142-9418 VL - 29 IS - 6 SP - 723 EP - 728 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-20982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jaunich, Matthias A1 - Stark, Wolfgang A1 - Wolff, Dietmar T1 - Low temperature properties of rubber seals T2 - 9th Fall rubber colloquium CY - Hannover, Germany DA - 2010-11-03 KW - Dichtungen KW - Elastomere KW - Tieftemperaturverhalten PY - 2010 SN - 978-3-9814076-0-0 SP - 175 EP - 178 AN - OPUS4-22331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frübing, P. A1 - Wang, F. A1 - Günter, C. A1 - Gerhard, R. A1 - Wegener, M. A1 - Jaunich, Matthias A1 - Stark, Wolfgang T1 - Relation between dielectric and mechanical losses in ferroelectric poly(vinylidene fluoride - hexafluoropropylene) films N2 - The temperature dependences of dielectric permittivity and elastic modulus of poly(vinylidene fluoride - hexafluoropropylene) (P(VDF-HFP)) are compared and explained by use of structural data obtained by differential scanning calorimetry and X-ray analysis. Special emphasis is put on the effect of uniaxial stretching which renders the polymer ferroelectric. It is shown that dielectric and mechanical relaxations at the glass transition (aa relaxation) are closely related and not significantly affected by stretching. It is further confirmed that stretching destroys the non-polar spherulitic crystalline structure and produces relatively small-sized polar crystallites. This manifests in the disappearence of the so-called ac relaxation which is associated to molecular motions within the spherulitic crystalline lamellae. However, there are discrepancies between dielectric and mechanical losses above the glass transition which point towards a still not described structural transition. T2 - 10th IEEE International conference on solid dielectrics (ICSD) CY - Potsdam, Germany DA - 2010-07-04 KW - Poly(vinylidene(fluoride - hexafluoropropylene) KW - P(VDF-HFP) KW - Ferroelectric polymer KW - Dielectric relaxation KW - Dynamic mechanical analysis KW - Uniaxial stretching PY - 2010 SN - 978-1-4244-7945-0 U6 - https://doi.org/10.1109/ICSD.2010.5567936 SP - 1 EP - 4(?) AN - OPUS4-23421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - von der Ehe, Kerstin A1 - Wolff, Dietmar A1 - Völzke, Holger A1 - Stark, Wolfgang T1 - Understanding the low temperature properties of rubber seals N2 - Rubbers are widely used as main sealing materials for containers for low and intermediate level radioactive waste and as additional component to metal seals in spent fuel and high active waste containers. The save encapsulation of the radioactive container inventory has to be guaranteed according to legislation and appropriate guidelines for long term storage periods as well as down to temperatures of -40 °C during transport. Therefore the understanding of failure mechanisms that lead to leakage at low temperatures is of high importance. It is known that the material properties of rubbers are strongly temperature dependent. At low temperatures this is caused by the rubber-glass transition (abbr. glass transition). During continuous cooling the material changes from rubber-like entropy-elastic to stiff energy-elastic behaviour, that allows nearly no strain or retraction, due to the glass transition. Hence rubbers are normally used above their glass transition but the minimum working temperature limit is not defined precisely, what can cause problems during application. Therefore the lower operation temperature limit of rubber seals should be determined in dependence of the material properties. The results of Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) are combined with the results of standardized measurements as the compression set according to ISO 815. To reduce the test time of the standard tests a faster technique was developed. Additionally, the breakdown temperature of the sealing function of complete O-ring seals is measured in a component test setup to compare it with the results of the other tests. The experimental setup is capable of measuring the leakage rate at low temperatures by the pressure rise method. A fluorocarbon rubber (FKM) was selected for this investigation as it is often used for radioactive waste containers. Some materials (seals and test sheets) were purchased from a commercial seal producer and some materials were compounded and cured at BAM in form of rubber sheets. T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Dichtungen KW - Elastomere KW - Tieftemperaturverhalten PY - 2010 SP - 1 EP - 7 (Session T41 / Paper 169) AN - OPUS4-23887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -