TY - JOUR A1 - Min, Hyegeun A1 - Wettmarshausen, Sascha A1 - Friedrich, Jörg Florian A1 - Unger, Wolfgang T1 - A ToF-SIMS study of the deuterium-hydrogen exchange induced by ammonia plasma treatment of polyolefins N2 - ToF-SIMS has been used to study the surface functionalization of polypropylene and polyethylene samples by exposure to low-pressure ammonia plasma. Static secondary ion mass spectrometry is an appropriate tool to determine hydrogen isotopes as elements and in fragment ions with high sensitivity and selectivity. Specifically the exchange of hydrogen isotopes and the incorporation of N-containing moieties in the near-surface layer of the polyolefins have been studied in ND3 plasma experiments with conventional polypropylene (h-PP) and polyethylene (h-PE) and NH3 plasma experiments with deuterated polyethylene (d-PE). Considering the exchange of hydrogen between the plasma and the polymer surface studied by using deuterated ammonia and polyolefin samples the conclusion has been derived that polypropylene with its side chain methyl groups is more susceptible to hydrogen exchange reactions. For ND3 plasma treatment of polyethylene and polypropylene similar N-containing fragments were obtained and the measured semi-quantitative ToF-SIMS N-uptake data are rather similar. The observation of a wide range of characteristic mixed CkNlHmDn+ secondary fragment ions suggests complex and manifold reaction pathways at the polymer–plasma interface besides simple grafting of –ND2 or –NH2 moieties formed by ammonia fragmentation in the plasma. Finally, indications of an isotopic effect for hydrogen isotopes in the plasma process have been observed by comparison of ND3/h-PE results with those of NH3/d-PE. KW - ToF-SIMS KW - Hydrogen-deuterium exchange KW - Ammonia plasma treatment KW - Amine-functionalized polymer KW - Polyolefins PY - 2011 DO - https://doi.org/10.1039/c1ja10043b SN - 0267-9477 SN - 1364-5544 VL - 26 SP - 1157 EP - 1165 PB - Royal Society of Chemistry CY - London AN - OPUS4-23754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Unger, Wolfgang A1 - Lippitz, Andreas A1 - Koprinarov, Ivaylo A1 - Kühn, Gerhard A1 - Weidner, Steffen A1 - Vogel, Lydia T1 - Chemical reactions at polymer surfaces interacting with a gas plasma or with metal atoms - their relevance to adhesion N2 - The chemical and morphological stabilities of polymer segments in the near-surface layer were investigated by spectroscopic methods such as X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy. Model studies were undertaken with Langmuir–Blodgett films, self-assembled monolayers and oligomer films. For thin polymer layers (30 to 500 nm), the changes in molecular-weight distributions of some polymers were investigated systematically by size exclusion chromatography, matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry and thermal-field flow fractionation for oxygen- and helium-plasma exposures. The polymer surfaces were found to be relatively stable at exposure to an oxygen low-pressure plasma up to ca. 2 s. This is important information to get maximum adhesion to metals in composites. In correlation to their redox potentials, potassium, aluminium and chromium react with oxygen functional groups at the polymer/metal interface. In a dedicated study, chromium was found to attack aromatic rings and form different reaction products. PY - 1999 DO - https://doi.org/10.1016/S0257-8972(99)00229-7 SN - 0257-8972 VL - 116-119 SP - 772 EP - 782 PB - Elsevier Science CY - Lausanne AN - OPUS4-6981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weigert, Florian A1 - Müller, A. A1 - Häusler, I. A1 - Geißler, Daniel A1 - Skroblin, D. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Combining HR‑TEM and XPS to elucidate the core–shell structure of ultrabright CdSe/CdS semiconductor quantum dots N2 - Controlling thickness and tightness of surface passivation shells is crucial for many applications of core–shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the applicationrelevant functionality like a high photoluminescence (PL) quantum yield, calling for a whole nanoobject approach. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. In addition to demonstrating the potential of this novel whole nanoobject approach for determining architectures of small nanoparticles, the presented results also highlight challenges faced by different sizing and structural analysis methods and method-inherent uncertainties. KW - Photoluminescence KW - Single particle KW - Microscopy KW - Particle architecture KW - Thickness KW - SAXS KW - Shell KW - XPS KW - TEM KW - Semiconductor KW - Quantum dot KW - Photophysics KW - Quantum yield PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517911 DO - https://doi.org/10.1038/s41598-020-77530-z VL - 10 IS - 1 SP - 20712 PB - Springer Nature AN - OPUS4-51791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -