TY - JOUR A1 - Weigert, Florian A1 - Müller, A. A1 - Häusler, I. A1 - Geißler, Daniel A1 - Skroblin, D. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Combining HR‑TEM and XPS to elucidate the core–shell structure of ultrabright CdSe/CdS semiconductor quantum dots N2 - Controlling thickness and tightness of surface passivation shells is crucial for many applications of core–shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the applicationrelevant functionality like a high photoluminescence (PL) quantum yield, calling for a whole nanoobject approach. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. In addition to demonstrating the potential of this novel whole nanoobject approach for determining architectures of small nanoparticles, the presented results also highlight challenges faced by different sizing and structural analysis methods and method-inherent uncertainties. KW - Photoluminescence KW - Single particle KW - Microscopy KW - Particle architecture KW - Thickness KW - SAXS KW - Shell KW - XPS KW - TEM KW - Semiconductor KW - Quantum dot KW - Photophysics KW - Quantum yield PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517911 DO - https://doi.org/10.1038/s41598-020-77530-z VL - 10 IS - 1 SP - 20712 PB - Springer Nature AN - OPUS4-51791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gähde, J. A1 - Friedrich, Jörg Florian A1 - Fischer, T. A1 - Unger, Wolfgang A1 - Lippitz, Andreas A1 - Falkenhagen, Jana T1 - Reactions of polymer analogous model substances with metals and oxides KW - Modellverbindung KW - Al202 KW - Chrom KW - Orientierung, molekular KW - Chemical interaction KW - Model compounds KW - Al2O3 and chromium KW - Molecular orientation KW - Formation of complexes KW - Plasma PY - 1996 SN - 0340-255x SN - 1437-8027 VL - 101 SP - 194 EP - 198 PB - Springer CY - Berlin AN - OPUS4-685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Sturm, Heinz A1 - Schulz, Eckhard A1 - Stark, Wolfgang A1 - Bovtun, V. A1 - Friedrich, Jörg Florian ED - Olefjord, I. ED - Nyborg, L. ED - Briggs, D. T1 - Techniques for surface composition analysis with scanning force microscopy (SFM) using electrical surface properties T2 - 7th European Conference on Applications of Surface and Interface Analysis CY - Göteborg, Sweden DA - 1997-06-16 PY - 1997 SN - 0-471-97827-2 SP - 579 EP - 582 PB - Wiley CY - Chichester AN - OPUS4-6854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -