TY - GEN A1 - Görner, Wolf A1 - Hentschel, Manfred P. A1 - Müller, Bernd R. A1 - Riesemeier, Heinrich A1 - Krumrey, M. A1 - Ulm, G. T1 - The first hard X-rays at the BAMline T2 - BESSY annual report 2000 PY - 2001 UR - http://www.helmholtz-berlin.de/media/media/oea/web/pr_webseite/druckschriften/berichte/bessy/annualreport2000.pdf#page=329 SN - 0179-4159 SP - 329 EP - 331 PB - Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung CY - Berlin AN - OPUS4-1299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weise, Hans-Peter A1 - Görner, Wolf A1 - Hedrich, Martina T1 - Determination of elements by nuclear analytical methods JF - Fresenius' journal of analytical chemistry N2 - Zusammenfassung The working principle of nuclear analytical methods (NAMs) is not influenced by the chemical bond. Consequently, they are independent counterparts to the well-known chemical procedures. NAMs obey fundamental laws or can be described and understood thoroughly. This qualifies them as candidates for reference methods. Although following similar nuclear reaction schemes, they comprise bulk analyzing capability (neutron and photon activation analysis) as well as detection power in surface near regions of solids (ion beam techniques). Prominent features of NAMs are sensitivity, selectivity, multielement determination and linearity of the calibration function covering a concentration range of several orders of magnitude. Moreover, ion beam techniques allow depth profiling with nm-resolution in several cases while the ion microprobe additionally offers a lateral resolution in the wm-scale. As NAMs require expensive apparatus (nuclear reactor, accelerator in radioactive control areas) their availability is restricted to a small number of suitably equipped institutes. However, they are able to solve complex analytical tasks, take part in key comparisons and play an essential role in the certification of reference materials. KW - Nuclear Analytical Methods PY - 2001 DO - https://doi.org/10.1007/s002160000626 SN - 0937-0633 VL - 369 IS - 1 SP - 8 EP - 14 PB - Springer CY - Berlin AN - OPUS4-843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Bernd R. A1 - Görner, Wolf A1 - Hentschel, Manfred P. A1 - Riesemeier, Heinrich A1 - Krumrey, M. A1 - Ulm, G. A1 - Diete, W. A1 - Klein, U. A1 - Frahm, R. T1 - BAMlin - the first hard X-ray beamline at BESSY II JF - Nuclear instruments and methods in physics research A N2 - The first hard X-ray beamline at BESSY II will be installed by BAM and PTB at a superconducting 7 T wavelength shifter. The main optical elements of the beamline are a Double-Multilayer-Monochromator and a Double-Crystal-Monochromator. The two devices can be used separately or in-line. Main applications of monochromatic radiation with photon energies up to 50 keV are X-ray fluorescence analysis, micro-computed tomography, X-ray topography, detector calibration and reflectometry. Calculable undispersed radiation up to 200 keV will be available for radiometric applications. KW - Double-Multilayer-Monochromator with meridional bender KW - Double-Crystal-Monochromator with sagittal bender KW - X-ray fluorescence analysis KW - Micro-computed tomography KW - X-ray topography KW - Detector calibration KW - Reflectometry PY - 2001 DO - https://doi.org/10.1016/S0168-9002(01)00466-1 SN - 0168-9002 SN - 0167-5087 VL - 467-468 IS - 1 SP - 703 EP - 706 PB - North-Holland CY - Amsterdam AN - OPUS4-1171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudek, Gabriele A1 - Pritzkow, Wolfgang A1 - Riebe, Gundel A1 - Görner, Wolf A1 - Alber, D. T1 - Characterization of neutron transmuted zinc traces in pure copper materials by isotope dilution mass spectrometry JF - Fresenius' journal of analytical chemistry N2 - The neutron transmutation doping (NTD) of highly pure copper with zinc was investigated as a promising means of achieving controlled gradation of the zinc content in the range 1-20 wg g-1. The doping process leads to the enrichment of two stable isotopes 64Zn and 66Zn in a ratio which differs from that of natural isotopic distribution. Mass spectrometric investigations by thermal ionization mass spectrometry (TIMS) were performed to validate the results obtained by gamma spectrometry. The investigations included both determination of the isotopic ratios of the doped zinc isotopes and the analysis of the accumulated zinc contents by isotope dilution (ID) analysis. Thereby a sample-specific correction of the blank could be performed because the isotope 68Zn was not influenced, because of the transmutation process. The results obtained by TIMS prove the strict proportionality of the doped zinc content, in the range 5 to 20 wg g-1, to the neutron fluence. Comparison with gamma spectrometric results showed a very good agreement within the uncertainties. PY - 2001 DO - https://doi.org/10.1007/s002160100784 SN - 0937-0633 N1 - Geburtsname von Dudek, Gabriele: Wermann, G. - Birth name of Dudek, Gabriele: Wermann, G. VL - 370 IS - 5 SP - 606 EP - 611 PB - Springer CY - Berlin AN - OPUS4-1145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Görner, Wolf A1 - Berger, Achim A1 - Ecker, Klaus A1 - Haase, Oskar A1 - Hedrich, Martina A1 - Segebade, Christian A1 - Weidemann, Gerd A1 - Dudek, Gabriele T1 - Broad band application of combined instrumental photon and neutron activation analysis JF - Journal of radioanalytical and nuclear chemistry PY - 2001 SN - 0236-5731 SN - 1588-2780 SN - 1417-2097 N1 - Geburtsname von Dudek, Gabriele: Wermann, G. - Birth name of Dudek, Gabriele: Wermann, G. VL - 248 IS - 1 SP - 45 EP - 52 PB - Elsevier Sequoia CY - Lausanne AN - OPUS4-11229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -