TY - CONF A1 - Wirth, Cynthia A1 - Zocca, Andrea A1 - Günster, Jens A1 - Colombo, P. A1 - Bernardo, E. T1 - Highly porous LAS glass-ceramics by 3D printing T2 - 37th International Conference and Exposition on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 2013-01-27 PY - 2013 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. AN - OPUS4-27842 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wirth, Cynthia A1 - Zocca, Andrea A1 - Günster, Jens T1 - Resorbable ceramic scaffolds generated by 3D printing T2 - BIT's 1st Annual World Congress of Advanced Materials 2012 CY - Beijing, China DA - 2012-06-06 PY - 2012 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. AN - OPUS4-27843 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Podshivalov, L. A1 - Wirth, Cynthia A1 - Zocca, Andrea A1 - Günster, Jens A1 - Bar-Yoseph, P. A1 - Fischer, A. T1 - Design, analysis and additive manufacturing of porous structures for biocompatible micro-scale scaffolds N2 - Advancements in the fields of biocompatible materials, manufacturing processes, computational methods and medicine have led to the emergence of a new field: micro-scale scaffolds for bone replacement and regeneration. Yet most such scaffolds produced today are characterized by very basic geometry, and their microstructure differs greatly from that of the actual tissue they are intended to replace. In this paper, we propose a novel approach for generating micro-scale scaffolds based on processing actual micro-CT images and then reconstructing a highly accurate geometrical model. This model is manufactured by means of a state-of-the-art 3D additive manufacturing process from biocompatible materials. At the micro-scale level, these scaffolds are very similar to the original tissue, thus interfacing better with the surrounding tissue and facilitating more efficient rehabilitation for the patient. Moreover, the approach facilitates the design and manufacture of patient-specific scaffolds which can copy patients’ exact structural and mechanical characteristics, taking into account their physical condition and medical history. By means of multi-resolution volumetric modeling methods, scaffold porosity can also be adapted according to specific mechanical requirements. The process of designing and manufacturing micro-scale scaffolds involves five major stages: (a) building a volumetric multi-resolution model from micro-CT images; (b) generation of surface geometric model in STL format; (c) additive manufacturing of the scaffold; (d) scaffold shape verification relative to the geometric design; and (e) verification of mechanical properties through finite element analysis. In this research, all the proposed stages of the approach were tested. The input included micro-CT scans of porous ceramic structure, which is quite similar to commercial porous scaffolds. The results show that the proposed method is feasible for design and manufacture of micro-scale scaffolds. KW - Micro-scale bone scaffolds KW - Additive manufacturing KW - Multiscale FEA KW - Ceramics KW - Multiresolution modeling PY - 2013 DO - https://doi.org/10.1016/j.procir.2013.01.049 SN - 2212-8271 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. VL - 5 SP - 247 EP - 252 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-28003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Wirth, Cynthia A1 - Bernardo, E. A1 - Müller, Ralf A1 - Günster, Jens A1 - Colombo, P. T1 - LAS glass-ceramic scaffolds by three-dimensional printing N2 - Highly porous (>60% open porosity) glass–ceramic scaffolds with remarkable mechanical properties (compression strength of ~15 MPa) were produced by indirect 3D printing. Precursor glass powders were printed into 3D ordered structures and then heat treated to sinter and develop crystalline phases. The final glass–ceramic contained a β-spodumene solid solution together with a secondary phase of lithium disilicate. The precision of the printed geometry and the density of the struts in the scaffold depended on several processing parameters (e.g. powder size and flowability, layer thickness) and were improved by increasing the binder saturation and drying time. Two types of powders with different particle size distribution (PSD) and flowability were used. Powders with a larger PSD, could be processed within a wider range of printing parameters due to their good flowability; however, the printing precision and the struts density were lower compared to the scaffolds printed using the powder in a smaller average PSD. KW - Glass ceramics KW - Porosity KW - Shaping KW - Strength KW - Additive manufacturing PY - 2013 DO - https://doi.org/10.1016/j.jeurceramsoc.2012.12.012 SN - 0955-2219 SN - 1873-619X N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. VL - 33 IS - 9 SP - 1525 EP - 1533 PB - Elsevier CY - Oxford AN - OPUS4-28284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wirth, Cynthia A1 - Günster, Jens A1 - Heinrich, J.G. T1 - Layerwise slurry deposition (LSD) of classic ceramics - an alternative to improve designing in the traditional ceramic industry? T2 - 5th International Conference on Advanced Research in Virtual and Rapid Prototyping (VRAP) CY - Leiria, Portugal DA - 2011-09-28 PY - 2011 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. AN - OPUS4-25205 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wirth, Cynthia A1 - Günster, Jens A1 - Heinrich, J.G. T1 - Microstructure evolution of a glass ceramic system producend by Layerwise Slurry Deposition (LSD) T2 - EUROMAT 2011 - European Congress and Exhibition on Advanced Materials and Processes CY - Montpellier, France DA - 2011-09-12 PY - 2011 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. AN - OPUS4-25206 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gildenhaar, Renate A1 - Knabe, C. A1 - Wirth, Cynthia A1 - Linow, Ulf A1 - Houshmand, A. A1 - Berger, Georg T1 - Calcium alkaline phosphate scaffolds for bone regeneration 3D-fabricated by additive manufacturing N2 - Calcium alkaline phosphate granulates can be used for substitution of several bone defects but for the reconstruction of large skeletal parts in the maxillofacial and orthopaedic fields fitted scaffolds are preferable. Within the additive manufacturing methods, the 3D printing process offers exciting opportunities to generate defined porous scaffolds. We used a R1 printer from ProMetal Company, USA, for producing scaffolds directly from a ceramic powder. For this direct free form fabrication technology the powder has to possess a lot of specific properties both for the generation of a stable green body and also for the subsequent sintering preparation. For this printing process we prepared different granules in a fluidized bed process containing Ca2KNa(PO4)2 as main crystalline phase. Granules were characterized by different methods and several sieve fractions were used for preparing disc like and cylindrical parts. The suitability of granules for this printing process was determined by porosity and strength of produced bodies. Next to granules' performance both of these properties can be directly influenced by 3D printing process parameters. With knowledge of suitable process parameters scaffolds with different porosity in a respective desired design can be created. In this study, cylindrical scaffolds with graded porosity were produced for bone regeneration of segmental defects in maxillofacial surgery and dental implantology by tissue engineering. KW - 3D printing KW - Calcium alkaline phosphates KW - Ceramic scaffolds KW - Oral surgery PY - 2012 DO - https://doi.org/10.4028/www.scientific.net/KEM.493-494.849 SN - 1013-9826 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. VL - 493-494 SP - 849 EP - 854 PB - Trans Tech Publ. CY - Aedermannsdorf AN - OPUS4-24989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wirth, Cynthia A1 - Dombrowski, Felix A1 - Günster, Jens T1 - Additive manufacturing of bioaktive ceramic scaffolds T2 - XI Encontro da SBPMat CY - Florianópolis, Brazil DA - 2012-09-23 PY - 2012 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. AN - OPUS4-27839 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wirth, Cynthia A1 - Lopez-Heredia, A. A1 - Günster, Jens A1 - Gildenhaar, Renate A1 - Berger, Georg A1 - Houshmand, A. A1 - Stiller, M. A1 - Knabe-Ducheyne, T1 - Dynamic cell culture on glassy crystalline calcium alkali orthophosphates scaffolds T2 - International Symposium on Apatit and Corellative Biomaterials CY - Nantes, France DA - 2013-06-05 PY - 2013 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. AN - OPUS4-28862 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wirth, Cynthia A1 - Zocca, Andrea A1 - Günster, Jens A1 - Podshivalov, L. A1 - Bar-Yoseph, P. A1 - Fischer, A. T1 - Designed AW porous scaffolds for powder-based 3D printing T2 - 5th International Conference on Advanced Research in Virtual and Rapid Prototyping (VRAP 2013) CY - Leiria, Portugal DA - 2013-10-01 PY - 2013 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. AN - OPUS4-29880 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wirth, Cynthia A1 - Zocca, Andrea A1 - Günster, Jens T1 - Additive manufacturing of ceramic materials T2 - 57th Congresso Brasileiro de Ceramica (57th Congress of the Brazilian Ceramic Society) CY - Natal, Brazil DA - 2013-05-19 PY - 2013 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. AN - OPUS4-29882 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mühler, T. A1 - Heinrich, J. A1 - Wirth, Cynthia A1 - Günster, Jens T1 - Slurry-based additive manufacturing of ceramics N2 - Most additive manufacturing (AM) techniques have in common that material is spread out as thin layers of a dried powder/granulate by a roller or a shaker system. These layers are mostly characterized by a low packing rate. On the other hand, appreciable densities can be reached by the use of ceramic slurries. In this context, the layer-wise slurry deposition (LSD) has been developed. Specific features of the LSD process are reflected on the basis of already existing additive manufacturing technologies. The microstructure of laser-sintered bodies will be discussed, and strategies for an improved microstructure during sintering will be introduced. KW - Additive manufacturing KW - Ceramic KW - Selective laser sintering PY - 2015 DO - https://doi.org/10.1111/ijac.12113 SN - 1546-542X SN - 1744-7402 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. VL - 12 IS - 1 SP - 18 EP - 25 PB - American Ceramic Soc. CY - Westerville, Ohio AN - OPUS4-29937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lopez-Heredia, M.A. A1 - Gildenhaar, Renate A1 - Berger, Georg A1 - Linow, Ulf A1 - Wirth, Cynthia A1 - Günster, Jens A1 - Houshmand, A. A1 - Stiller, M. A1 - Knabe-Ducheyne, C. T1 - Effect of stressed and unstressed cell culture environments on the viability of MC3T3 cells with calcium phosphates T2 - ISACB-6 - International symposium on apatite and correlative biomaterials CY - Nantes, France DA - 2013-06-05 KW - Cell culture media KW - Fetal bovine serum KW - Stressed KW - Unstressed KW - Calcium alkaline orthophosphates PY - 2013 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-299387 DO - https://doi.org/10.4172/2090-5025.S1-002 SN - 2090-5017 SN - 2090-5025 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. SP - 1 EP - 3(?) PB - Ashdin AN - OPUS4-29938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Wirth, Cynthia A1 - Staude, Andreas A1 - Bernardo, E. A1 - Günster, Jens A1 - Colombo, P. T1 - SiOC ceramics with ordered porosity by 3 D-printing of a preceramic polymer N2 - Ceramic parts possessing an ordered porosity were produced for the first time by powder-based three-dimensional printing of a preceramic polymer followed by pyrolysis in an inert atmosphere. The main parameters involved in the process were investigated, and the precision of the printed and ceramized parts was assessed by means of scanning electron microscopy and micro computed tomography. The influence of two different printing solvents was investigated and the use of a mixture of 1-hexanol and hexylacetate in particular allowed the production of parts with a relative density of 80% both in the polymeric and in the ceramic state. The mixing of a cross-linking catalyst directly with the printing liquid greatly simplified the process, minimizing the necessity of preprocessing the starting powder. Three-dimensional printing of a preceramic polymer not containing any inert or active fillers was proved to be a feasible, convenient and precise process for the production of porous ceramic possessing a complex, ordered structure, such as stretch-dominated lattices. KW - Polymer KW - Ceramic KW - Cellular PY - 2013 DO - https://doi.org/10.1557/jmr.2013.129 SN - 0884-2914 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. VL - 28 IS - 17 SP - 2243 EP - 2252 PB - Materials Research Society CY - Warrendale, Pa. AN - OPUS4-29441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wirth, Cynthia A1 - Müller, Ralf A1 - Günster, Jens A1 - Mühler, T. A1 - Görke, R. A1 - Heinrich, J.G. T1 - Submicrometer silica spheres generated by laser fuming N2 - The production of agglomerate-free SiO2 particles exhibiting a monomodal distribution of particle sizes of around 300 nm by means of direct laser fuming of micrometric SiO2 powders has been successfully demonstrated. With a 12 kW cw CO2 laser system, a production rate of up to 1 kilogram powder per hour was achieved. Almost ideal spherical amorphous SiO2 particles in a broad particle size distribution between 10 nm and several 100 nm (d50 ≈ 300 nm) were synthesized. Several observations suggest weak agglomeration forces between the particles. A temperature reduction of 200 °C for sintering powder compacts was observed. KW - Laser KW - SiO2 KW - Nanopowder PY - 2013 DO - https://doi.org/10.4416/JCST2012-00033 SN - 2190-9385 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. VL - 4 IS - 1 SP - 11 EP - 18 PB - Göller CY - Baden-Baden AN - OPUS4-31423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Wirth, Cynthia A1 - Mühler, T. A1 - Günster, Jens T1 - Powder-bed stabilization for powder-based additive manufacturing N2 - The most successful additive manufacturing (AM) technologies are based on the layer-by-layer deposition of a flowable powder. Although considered as the third industrial revolution, one factor still limiting these processes to become completely autonomous is the often necessary build-up of support structures. Besides the prevention of lateral shifts of the part during the deposition of layers, the support assures quality and stability to the built process. The loose powder itself surrounding the built object, or so-called powder-bed, does not provide this sustenance in most existent technology available. Here we present a simple but effective and economical method for stabilizing the powder-bed, preventing distortions in the geometry with no need for support structures. This effect, achieved by applying an air flow through the powder-bed, is enabling an entirely autonomous generation of parts and is a major contribution to all powder-based additive manufacturing technologies. Moreover, it makes powder-based AM independent of gravitational forces, which will facilitate crafting items in space from a variety of powdery materials. KW - Additive manufacturing KW - Powder bed PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-314244 DO - https://doi.org/10.1155/2014/491581 SN - 1687-8132 SN - 1687-8140 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. VL - 2014 SP - 491581-1 - 491581-6 PB - Hindawi Publishing Corporation CY - New York, NY ; Cairo AN - OPUS4-31424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wirth, Cynthia A1 - Günster, Jens T1 - Additive Fertigung keramischer Werkstoffe T2 - 18. Augsburger Seminar für additive Fertigung CY - Augsburg, Deutschland DA - 2014-06-26 PY - 2014 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. AN - OPUS4-32529 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wirth, Cynthia T1 - Tape casting of water-based ceramics T2 - Workshop on Ceramic Processing CY - Natal, Brazil DA - 2014-02-17 PY - 2014 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. AN - OPUS4-32490 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wirth, Cynthia A1 - Günster, Jens A1 - Coelho, D. A1 - Holtza, D. A1 - Bernardo, E. T1 - 3D Printing of Preceramic Polymers for Biomedical Applications T2 - Fraunhofer Direct Digital Manufacturing Converence 2014 CY - Berlin, Germany DA - 2014-03-12 PY - 2014 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. AN - OPUS4-32491 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wirth, Cynthia A1 - Linow, Ulf A1 - Gildenhaar, Renate A1 - Zocca, Andrea A1 - Günster, Jens T1 - Powder-based additive manufacturing (AM) of porous ceramics T2 - DKG-Jahrestagung & Symposium Hochleistungskeramik 2014 CY - Clausthal-Zellerfeld, Germany DA - 2014-03-24 PY - 2014 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. AN - OPUS4-32492 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wirth, Cynthia A1 - Günster, Jens T1 - Development and processing of bioceramics at the BAM T2 - TMCE Symposium CY - Budapest, Hungary DA - 2014-05-19 PY - 2014 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. AN - OPUS4-32493 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wirth, Cynthia A1 - Günster, Jens T1 - Powder Based Additive Manufacturing of Ceramic Parts T2 - MSE Congress 2014 CY - Darmstadt, Germany DA - 2014-09-23 PY - 2014 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. AN - OPUS4-32494 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wirth, Cynthia T1 - Bioactive ceramics and glass-ceramics at the BAM - 20 years of development and the new trends T2 - DFG Nachwuchsakademie CY - Essen, Germany DA - 2014-10-06 PY - 2014 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. AN - OPUS4-32495 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wirth, Cynthia T1 - Additive manufacturing of ceramics for medical applications T2 - 2nd CIRP Conference on Biomanufacturing CY - Manchester, UK DA - 2015-07-29 PY - 2015 AN - OPUS4-34667 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wirth, Cynthia T1 - Additive manufacturing of ceramics - state of the art and new developments T2 - ABM Week - 70° Congresso Anual da Associacao Brasileira de Metalurgia CY - Rio de Janeiro, Brazil DA - 2015-08-17 PY - 2015 AN - OPUS4-34668 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Elsayed, H. A1 - Bernardo, E. A1 - Wirth, Cynthia A1 - Lopez-Heredia, M.A. A1 - Knabe, C. A1 - Colombo, P. A1 - Günster, Jens T1 - 3D-printed silicate porous bioceramics using a non-sacrificial preceramic polymer binder N2 - Silicate bioceramics possess an excellent bioactivity; however, shaping them into complex geometries is still challenging. Therefore, this paper aims to present a new strategy for the shaping of a bioglass-ceramic with controlled geometry and properties starting from a glass powder combined with a preceramic polymer, i.e. a silicon resin, and reactive fillers. The powder-based three-dimensional (3D)-printing of wollastonite (CaSiO3)-based silicate bioceramic parts was demonstrated in this work. The resin plays a dual role, as it not only acts as a non-sacrificial binder for the filler powders in the printing process but it also reacts with the fillers to generate the desired bioceramic phases. The mechanical and physical properties, i.e. ball-on-three-balls test, density, porosity and morphology, were evaluated in 3D-printed discs. These samples possessed a total porosity around 64 vol% and a biaxial flexural strength around 6 MPa. The raw materials used in this work also enabled the 3D-printing of scaffolds possessing a designed multi-scale porosity, suitable bioceramic phase assemblage and a compressive strength of 1 MPa (for cylindrical scaffolds with total porosity ~80 vol%). Solubility in TRIS/HCl and in vitro assays, i.e. viability, cytotoxicity and apoptosis assays, were also performed. In vitro tests indicated good cell viability and no cytotoxicity effect on the cells. KW - KNN KW - Glass microspheres PY - 2015 DO - https://doi.org/10.1088/1758-5090/7/2/025008 SN - 1758-5082 VL - 7 IS - 2 SP - 025008 PB - IOP Publ. CY - Philadelphia AN - OPUS4-34957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, Dongxu A1 - Wirth, Cynthia A1 - Zeng, Y.-P. A1 - Jiang, D. A1 - Günster, Jens A1 - Heinrich, J. T1 - Near zero shrinkage porous Al2O3 prepared via 3D-printing and reaction bonding N2 - Porous Al2O3 with high porosity (~45%), remarkable flexural strength (~70 MPa), and low dimensional change (~1–2%), was produced by indirect 3D printing and reaction bonding. Coarse Al with good flowability was carried out printing green body. The green body was heat treated to get fully oxidized, volume expansion during oxidation simultaneously formed strong neck bonding, not only brought good strength, but also restricted shrinkage. Porous Al2O3 with architecture of macro pores designed by 3D printing and micro pores in the strut formed by packing of particles was obtained. The near zero shrinkage can facilitate precise design of product with complex shape. KW - Al2O3 reaction bonding PY - 2015 DO - https://doi.org/10.1016/j.matlet.2015.02.037 SN - 0167-577x SN - 1873-4979 VL - 147 SP - 116 EP - 118 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-34960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Colombo, P. A1 - Wirth, Cynthia A1 - Günster, Jens T1 - Additive manufacturing of ceramics: Issues, potentialities, and opportunities N2 - Additive manufacturing (AM) is a technology which has the potential not only to change the way of conventional industrial manufacturing processes, adding material instead of subtracting, but also to create entirely new production and business strategies. Since about three decades, AM technologies have been used to fabricate prototypes or models mostly from polymeric or metallic materials. Recently, products have been introduced into the market that cannot be produced in another way than additively. Ceramic materials are, however, not easy to process by AM technologies, as their processing requirements (in terms of feedstock and/or sintering) are very challenging. On the other hand, it can be expected that AM technologies, once successful, will have an extraordinary impact on the industrial production of ceramic components and, moreover, will open for ceramics new uses and new markets. KW - Additive Fertigung KW - Keramik PY - 2015 DO - https://doi.org/10.1111/jace.13700 SN - 0002-7820 SN - 1551-2916 VL - 98 IS - 7 SP - 1983 EP - 2001 PB - Blackwell Publishing CY - Malden AN - OPUS4-34961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mühler, T. A1 - Wirth, Cynthia A1 - Ascheri, Mary A1 - Nicolaides, Dagmar A1 - Heinrich, J. A1 - Günster, Jens T1 - Slurry-based powder beds for the selective laser sintering of silicate ceramics N2 - Selective laser sintering of ceramic powders is a promising technique for the additive manufacturing of complex- and delicate-shaped ceramic parts. Most techniques have in common that the powder to be sintered is spread to a thin layer as a dry powder by means of a roller or shaker system. These layers have a relatively low density. On the other hand, appreciable densities can be reached with the use of ceramic slurries as the starting material. Therefore, the layer-wise slurry deposition (LSD) process has been developed. Layer stacks, i.e. powder beds, built up by employing the LSD technology exhibit a density comparable to ceramic powder compacts processed by means of conventional forming technologies. Writing the layer information with a focused laser beam in these dense ceramic powder compacts enables the manufacture of ceramic bodies with a high density and precision in contour. KW - Additive Fertigung KW - Keramik PY - 2015 DO - https://doi.org/10.4416/JCST2015-0007 SN - 2190-9385 VL - 6 IS - 2 SP - 113 EP - 118 PB - Göller CY - Baden-Baden AN - OPUS4-34962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elsayed, H. A1 - Zocca, Andrea A1 - Bernardo, E. A1 - Wirth, Cynthia A1 - Günster, Jens A1 - Colombo, P. T1 - Development of bioactive silicate-based glass-ceramics from preceramic polymer and filler N2 - 2014AbstractWollastonite/apatite glass-ceramics have been successfully prepared by a novel approach, consisting of the heat treatment of a silicone resinembedding micro-sized CaCO3particles, that act as reactive fillers, and bioactive glass powder in the SiO2–CaO–P2O5–K2O–Na2O–MgO–CaF2system. Zn-containing silicates, such as hardystonite (Ca2ZnSi2O7) and willemite (Zn2SiO4), were also developed either by directly mixing ZnOpowders with the glass, or by embedding them in the preceramic polymer, as additional fillers. KW - Additive manufacturing KW - Ceramics PY - 2015 DO - https://doi.org/10.1016/j.jeurceramsoc.2014.09.020 SN - 0955-2219 SN - 1873-619X VL - 35 SP - 731 EP - 739 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-34955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, C. A1 - Tian, X. A1 - Wang, L. A1 - Liu, Y. A1 - Wirth, Cynthia A1 - Günster, Jens A1 - Li, D. A1 - Jin, Z. T1 - Effect of particle size gradation on the performance of glass-ceramic 3D printing process N2 - Particle size gradation is regarded as an effective method for overcoming the contradicting requirements in three-dimensional printing (3DP). In present work, particle size gradation was optimized to obtain both acceptable flowability of the powder material and high-strength 3D-printed glass-ceramic products. The effect of gradation on the printing process, sintering process and performance of the 3D-printed glass-ceramic products was investigated comprehensively. The glass-ceramic powders with three size ranges were mixed in certain proportions and applied to print parts. The result showed parts printed with powder mixed by 60 wt% 45–100 µm and 40 wt% 0–25 µm particles had satisfactory density of 1.60 g/cm³ and bending strength of 13.8 MPa. The flowability decreased with an increasing proportion of fine particles. Part density was determined by the powder bulk density in the powder bed as well as the shrinkage during sintering while strength of part was found to be dependent on the sintering degree. KW - Flowability KW - Glass-ceramic KW - Particle size gradation KW - Three-dimensional printing KW - Mechanical properties PY - 2017 DO - https://doi.org/10.1016/j.ceramint.2016.09.197 SN - 0272-8842 VL - 43 IS - 1 SP - 578 EP - 584 PB - Elsevier AN - OPUS4-39783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dantas, A. A1 - Scalabrin, D. A1 - Farias, R. A1 - Barbosa, A. A. A1 - Ferraz, A. A1 - Wirth, Cynthia T1 - Design of highly porous hydroxyapatite scaffolds by conversion of 3D printed gypsum structures – a comparison study N2 - Hydroxyapatite (HA) is a bioceramic material with excellent biological properties. However, these properties are strongly dependent of ist crystallinity degree, with high values of crystallinity associated to poor resorption rates and bioactivity. This work evaluates the properties of HA samples produced by two different free-forming conformation methods, CNC machining and 3D printing. In both cases, porous gypsum samples were produced and subsequently converted into HA in a reaction with di-ammonium hydrogen phosphate at 100°C and pH 8. A total conversion of the samples was achieved after 36 h independently of the conformation method used. The microstructure, however, before and after the conversion is showed to be dependent on the method used. After conversion the machined samples achieved a Maximum compressive strength of 3.5 MPaforporosities of circa 80%, while 3D printed samples achieved a tensile strength of 2.0 MPa by porosities of 61%. T2 - The Second CIRP Conference on Biomanufacturing CY - Manchester Conference Centre, UK DA - July 29, 2015 KW - Additive manufacturing KW - 3D printing PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-400831 DO - https://doi.org/10.1016/j.procir.2015.07.030 SN - 2212-8271 VL - 49 SP - 55 EP - 60 PB - Elsevier AN - OPUS4-40083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -