TY - JOUR A1 - Li, X.M. A1 - Li, H.M. A1 - Zhang, Q.H. A1 - Lu, X.H. A1 - Li, S.Q. A1 - Koch, Matthias A1 - Polzer, J. A1 - Hackenber, R. A1 - Moniruzzaman, M. A1 - Khan, M. A1 - Kakoulides, E. A1 - Pak-Wing, K. A1 - Richy, A1 - Chi-Shing, N. A1 - Lu, T. A1 - Gui, E.M. A1 - Cheow, P.S. A1 - Teo, T.L. A1 - Rego, E. A1 - Garrido, B. A1 - Carvalho, L. A1 - Leal, R. A1 - Violante, F. A1 - Baek, S.Y. A1 - Lee, S. A1 - Choi, K. A1 - Kim, B. A1 - Bucar-Miklavcic, M. A1 - Hopley, C. A1 - Nammoonnoy, J. A1 - Murray, J. A1 - Wilson, W. A1 - Toman, B. A1 - Itoh, N. A1 - Gokcen, T. A1 - Krylov, A. A1 - Mikheeva, A. T1 - CCQM-K146 low-polarity analyte in high fat food: benzo a pyrene in olive oil JF - Metrologia N2 - The demonstration of competency and equivalence for the assessment of levels of contaminants and nutrients in primary foodstuffs is a priority within the 10-year strategy for the OAWG Track A core comparisons. The measurements are core challenges for reference material producers and providers of calibration Services. This key comparison related to low polarity analytes in a high fat, low protein, low carbohydrate food matrix and Benzo[a]pyrene in edible oil was the model System selected to align with this class within the OAWG strategy. Evidence of successful participation in formal, relevant international comparisons is needed to document measurement capability claims (CMCs) made by national metrology institutes (NMIs) and designated institutes (Dis). 16 National Metrology Institutions participated in the Track A Key Comparison CCQM-K146 Low-Polarity Analyte in high fat food: Benzo[a]pyrene in Olive Oil. Participants were requested to evaluate the mass fractions, expressed in µg/kg, of Benzo[a]pyrene in the olive oil material. The KCRV was determined from the results of all NMIs/DIs participating in the key comparison that used appropriately validated methods with demonstrated metrological traceability. Different methods such as liquid-liquid extraction, GPC and SPE were applied in the sample pretreatment and HPLC-FLD, HPLC-MS/MS, and GC-MS or GC-MS/MS were applied for detection by the participants. The mass fractions for BaP were in the range of (1.78 to 3.09) µg/kg with Standard uncertainties of (0.026 to 0.54) µg/kg, with corresponding relative Standard uncertainties from 0.9% to 21%. Five labs withdrew their result from the Statistical evaluation of the KCRV for technical reasons. One lab was excluded from the KCRV evaluation, as they did not meet the CIPM metrological traceability requirements. A Hierarchical Bayes option was selected for the KCRV value, which was determined as 2.74 µg/kg with a Standard uncertainty of 0.03 µg/kg. The 10 institutes those were included in the calculation of the consensus KCRV all agreed within their Standard uncertainties. Successful participation in CCQM-K146 demonstrates the measurement capabilities in determining mass fraction of organic compounds, with molecular mass of 100 g/mol to 500 g/mol, having low polarity pKow < -2, in mass fraction range from 0.1 µg/kg to 1000 µg/kg in a high fat, low protein, low carbohydrate food matrix. KW - Metrology KW - CCQM KW - Food KW - PAH PY - 2020 DO - https://doi.org/10.1088/0026-1394/57/1a/08017 VL - 57 IS - 1a SP - 08017 AN - OPUS4-52435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Mangelsdorf, Axel A1 - Portugal-Perez, A. A1 - Wilson, J. S. ED - Cadot, O. ED - Malouche, M. T1 - Do better standards facilitate exports? Evidence from China T2 - Non-tariff measures - a fresh look at trade policy’s new frontier PY - 2012 SN - 978-1-907142-53-6 IS - Part II / Chapter 7 SP - 141 EP - 154 CY - Washington, DC, USA AN - OPUS4-27551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mangelsdorf, Axel A1 - Portugal-Perez, A. A1 - Wilson, J. S. ED - Fomin, V. ED - Jakobs, K. T1 - Food standards and exports: evidence for China T2 - EURAS Proceedings 2011 - Standards for development N2 - Using a new database on Standards in China, we estimate the impact of voluntaiy and mandatory Standards - either harmonized to international norms or purely domestic — on Chinese food exports. The data covers seven Chinese products over the period 1992-2008. We find that Standards have a positive effect on China's export performance, as the benefits to Standardization in terms of reducing potential Information asymmetiy and signaling enhance food safety and quality in foreign markets seem to surpass compliance costs. Our estimation results Show that the positive effect of Chinese Standards is larger when they are harmonized to international measures. The results suggest that there are clear benefits to China’s Steps to base their domestic Standards and regulations on international measures. T2 - 16th EURAS Annual standardisation conference - Standards for development CY - Kaunas, Lithuania DA - 08.06.2011 KW - Food standards KW - Trade barriers KW - SPS KW - TBT KW - Harmonization PY - 2011 SN - 3-86130-629-8 SP - 219 EP - 233 PB - Wissenschaftsverlag Mainz CY - Aachen AN - OPUS4-25501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mangelsdorf, Axel A1 - Portugal-Perez, A. A1 - Wilson, J. S. T1 - Food standards and exports: evidence for China JF - World trade review N2 - Using a new database on standards in China, we estimate the impact of voluntary and mandatory standards – either harmonized to international norms or purely domestic – on Chinese food exports. The dataset covers seven Chinese products over the period 1992–2008. We find that standards have a positive effect on China's export performance, as the benefits to standardization in terms of reducing potential information asymmetry and signaling enhance food safety, and quality in foreign markets seem to surpass compliance costs. Our estimation results show that the positive effect of Chinese standards is larger when they are harmonized to international measures. The results suggest that there are clear benefits to China's steps to base their domestic standards and regulations on international measures. KW - Food standards KW - Trade barriers KW - SPS KW - TBT KW - Harmonization PY - 2012 DO - https://doi.org/10.1017/S1474745612000195 SN - 1474-7456 SN - 1475-3138 VL - 11 IS - 3 SP - 507 EP - 526 PB - Cambridge Univ. Press CY - Cambridge AN - OPUS4-26600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pommet, M. A1 - Juntaro, J. A1 - Heng, J.Y.Y. A1 - Mantalaris, A. A1 - Lee, A.F. A1 - Wilson, K. A1 - Kalinka, Gerhard A1 - Shaffer, M.S.P. A1 - Bismarck, A. T1 - Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites JF - Biomacromolecules N2 - Triggered biodegradable composites made entirely from renewable resources are urgently sought after to improve material recyclability or be able to divert materials from waste streams. Many biobased polymers and natural fibers usually display poor interfacial adhesion when combined in a composite material. Here we propose a way to modify the surfaces of natural fibers by utilizing bacteria (Acetobacter xylinum) to deposit nanosized bacterial cellulose around natural fibers, which enhances their adhesion to renewable polymers. This paper describes the process of modifying large quantities of natural fibers with bacterial cellulose through their use as substrates for bacteria during fermentation. The modified fibers were characterized by scanning electron microscopy, single fiber tensile tests, X-ray photoelectron spectroscopy, and inverse gas chromatography to determine their surface and mechanical properties. The practical adhesion between the modified fibers and the renewable polymers cellulose acetate butyrate and poly(l-lactic acid) was quantified using the single fiber pullout test. KW - Composires KW - Bacteria KW - Surface KW - Cellulose natural fibers PY - 2008 DO - https://doi.org/10.1021/bm800169g SN - 1525-7797 VL - 9 IS - 6 SP - 1643 EP - 1651 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-23162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -