TY - CONF A1 - Kloß, Heinz A1 - Österle, Werner A1 - Dmitriev, A.I. ED - Bartz, Wilfried J. T1 - Modelling mechanical friction and wear behaviour using numerical results of the movable cellular automata (MCA) method N2 - In the mechanical friction and wear process, normal and tangential (shear) forces cause elastic and plastic deformations, generate cracks and form loose wear particles through fracture processes. Depending on the working conditions, the material properties and the real contact Situation (topography), a third body is formed as a mechanical ly mixed layer, which determines different running-in and steady-state behaviours. Two dimensional (2D) MCA Simulation results will be described via empirical equations, which are related to the incubation time (period without wear) and the following running-in wear rate (kinetic concept of strength, fatigue wear model). In order to understand the running-in and steady-state wear, kinetic model equations for mass balance of the third body are useful and are therefore to be included in the investigation. For a more complex material behaviour, numerical Simulation results are also presented for friction at the pad-disk interface of automotive brakes. T2 - 19th International colloquium Tribology - Industrial and automotive lubrication CY - Stuttgart/Ostfildern, Germany DA - 21.01.2014 PY - 2014 SN - 978-3-943563-10-8 SP - Paper 8.10, 1 EP - 7 CY - Stuttgart/Ostfildern AN - OPUS4-30437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Österle, Werner ED - Czichos, Horst T1 - Sub-surface microstructural analysis N2 - Many performance properties of devices or interacting machine parts are related to superficial layers which often show completely different or at least modified microstructures compared to the bulk materials. A quasi non-destructive technique will be described which enables us to obtain detailed information of a material's state at a certain site of interest down to a depth of 10 µm from the surface with nanometre or even atomistic resolution. KW - FIB-Technik KW - Zielpräparation KW - Randschichtanalyse KW - Nanocharakterisierung PY - 2013 SN - 978-3-642-25849-7 SN - 978-3-642-25850-3 DO - https://doi.org/10.1007/978-3-642-25850-3_16 IS - Chapter 16 SP - 323 EP - 337 PB - Springer CY - Berlin Heidelberg AN - OPUS4-27644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Natte, Kishore A1 - Friedrich, Jörg Florian A1 - Wohlrab, Sebastian A1 - Lutzki, J. A1 - von Klitzing, R. A1 - Österle, Werner A1 - Orts-Gil, Guillermo T1 - Impact of polymer shell on the formation and time evolution of nanoparticle-protein corona N2 - The study of protein corona formation on nanoparticles (NPs) represents an actual main issue in colloidal, biomedical and toxicological sciences. However, little is known about the influence of polymer shells on the formation and time evolution of protein corona onto functionalized NPs. Therefore, silicapoly(ethylene glycol) core–shell nanohybrids (SNPs@PEG) with different polymer molecular weights (MW) were synthesized and exhaustively characterized. Bovine serum albumin (BSA) at different concentrations (0.1–6 wt%) was used as model protein to study protein corona formation and time evolution. For pristine SNPs and SNPs@PEG (MW = 350 g/mol), zeta potential at different incubation times show a dynamical evolution of the nanoparticle–protein corona. Oppositely, for SNPs@PEG with MW ≥2000 g/mol a significant suppression of corona formation and time evolution was observed. Furthermore, AFM investigations suggest a different orientation (side-chain or perpendicular) and Penetration depth of BSA toward PEGylated surfaces depending on the polymer length which may explain differences in protein corona evolution. KW - Nanoparticles KW - Silica KW - PEGylation KW - Protein corona KW - BSA KW - Biointerface PY - 2013 DO - https://doi.org/10.1016/j.colsurfb.2012.11.019 SN - 0927-7765 VL - 104 SP - 213 EP - 220 PB - Elsevier AN - OPUS4-38547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Österle, Werner A1 - Deutsch, Cornelius A1 - Rooch, Heidemarie A1 - Dörfel, Ilona T1 - Friction films on C-SiC discs after dynamometer tests with different commercial brake pads T2 - EuroBrake 2012 CY - Dresden, Germany DA - 2012-04-16 KW - Ceramic disc KW - Friction film KW - PMC-pad KW - SM-pad KW - Third body PY - 2012 IS - EB2012-FM-01 SP - 1 EP - 9 AN - OPUS4-26823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A. I. A1 - Österle, Werner A1 - Kloß, Heinz A1 - Orts-Gil, Guillermo T1 - A study of third body behaviour under dry sliding conditions. Comparison of nanoscale modelling with experiment N2 - Automotive brake pads consist of many components but it is still not entirely clear which role each of the elements of this complex composition plays to provide the specified regimes of sliding. This is due to the mutual interaction of multiscale mechanisms, realized during the friction. In this work we have attempted to partly answer this question using computer simulations. Since the simulation allows us to consider various combinations of the structure of the system being simulated ceteris paribus, it becomes possible to understand the role of each constituent sequentially. The main attention is paid to the structure and composition of the thin film that forms on the surface of both bodies as a result of compaction of the wear product, its chemical composition and oxidation. This layer, also named a third body or friction film, differs in composition and microstructure from the two first bodies. We considered a single contact for the steady state sliding when the structure and composition of friction films already are formed. As a modelling tool we used the method of movable cellular automata, which has well proven itself in solving of such tasks. We investigated the influence of modification of the structure and composition of the third body on the features of system behaviour at friction. To assess the adequacy of the numerical model, experimental studies with an artificial third body were also carried out. The Simulation results are in good agreement with experimental data. KW - Third body KW - Dry sliding KW - Mechanically mixed layer KW - Computer simulation PY - 2012 DO - https://doi.org/10.3176/eng.2012.3.12 SN - 1736-6038 SN - 1736-7522 VL - 18 IS - 3 SP - 270 EP - 278 AN - OPUS4-38545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Natte, Kishore A1 - Österle, Werner A1 - Friedrich, Jörg Florian A1 - von Klitzing, R. A1 - Orts-Gil, Guillermo T1 - Tuning interfacial properties and colloidal behavior of hybrid nanoparticles by controlling the polymer precursor N2 - A facile and versatile synthetic route for controlling the size and surface potential of organic–inorganic hybrid silica nanoparticles (NPs) is introduced in this paper. For polymer-grafted NPs, the density of polymer chains on the surface is strongly affected by the concentration of precursor. Nevertheless, for condensed NPs, the precursor concentration determines the particle size but not the density of polymer chains on the surface or the adsorption of bovine serum albumin (BSA). Results presented here may have Major implications in biomedical and colloidal chemistry since interfacial and colloidal properties are known to drive several processes associated with nanoparticles in biological media. KW - BSA KW - Bio-interface KW - Nanosilica hybrids KW - PEG KW - Protein corona PY - 2012 DO - https://doi.org/10.1002/macp.201200148 SN - 0025-116X SN - 1022-1352 SN - 1521-3935 VL - 213 IS - 22 SP - 2412 EP - 2419 PB - Whiley-VCH CY - Weinheim AN - OPUS4-38549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bresch, Harald A1 - Dörfel, Ilona A1 - Steinborn, Gabriele A1 - Krietsch, Arne A1 - Langner, Jeanette A1 - Schmidt, Martin A1 - Österle, Werner A1 - Seeger, Stefan T1 - Physical-chemical characterization of NM105(P25) N2 - NM 105, Ti02 (P25) could not be ignited as dust layer and dispersed in air as dust/air-mixture as well. This dust is not dust explosible and the burning behaviour corresponds to Burning Class 1 (no Ignition). The results have shown that the tested sample is thus not combustible at all, because it is already oxidized completely. KW - OECD KW - WPMN KW - TiO2 KW - NM105 KW - P25 KW - Sponsorship programme PY - 2012 SP - 1 EP - 18 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-27322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cristol, A.L. A1 - Desplanques, Y. A1 - Österle, Werner A1 - Degallaix, G. T1 - Coupling between thermal localisation and friction mechanisms: heat accumulation effect N2 - Heat accumulation induced by a succession of railway brakings leads to changes of the friction conditions occurring in pad-disc contact. Infrared thermography observations show a progressive increase of surface temperature over the succession, as well as a modification of the hot band migration phenomenon. From a tribological point of view, the heat accumulation, accompanied by a wear increase, progressively modifies the friction behaviour from one braking to the next. Post-mortem observations of pads are performed on surface by scanning electron microscopy and in depth after Focus Ion Beam cut by scanning ion microscopy. Observations show that, with heat accumulation, the third body quantity rises inside the contact, in accordance with wear increase. It is concluded that source flows of third body, which increase with temperature, feed aplenty the contact and modify its load-bearing capacity. T2 - JEF 2010 - 6th European conference on braking CY - Lille, France DA - 2010-11-24 KW - Successive braking KW - Heat accumulation KW - Thermal localisation KW - Wear KW - SEM KW - FIB PY - 2010 SP - 61 EP - 69 AN - OPUS4-22729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Österle, Werner A1 - Bresch, Harald A1 - Dörfel, Ilona A1 - Fink, C. A1 - Giese, A. A1 - Prietzel, Claudia A1 - Seeger, Stefan A1 - Walter, J. T1 - Examination of airborne brake dust T2 - JEF 2010 - 6th European conference on braking CY - Lille, France DA - 2010-11-24 KW - Brake dust KW - Nanoparticles KW - Size-distribution PY - 2010 SP - 1 EP - 6(?) AN - OPUS4-22655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dmitriev, A.I. A1 - Österle, Werner A1 - Kloß, Heinz T1 - Nano-scale modeling of pad-disc interface. The influence of copper as a pad ingredient. T2 - JEF 2010 - 6th European conference on braking CY - Lille, France DA - 2010-11-24 KW - Friction layer KW - Copper particles KW - MCA-modelling PY - 2010 SP - 1 EP - 6(?) AN - OPUS4-22656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -