TY - JOUR A1 - Orts Gil, Guillermo A1 - Natte, Kishore A1 - Drescher, Daniela A1 - Bresch, Harald A1 - Mantion, Alexandre A1 - Kneipp, J. A1 - Ă–sterle, Werner T1 - Characterisation of silica nanoparticles prior to in vitro studies: from primary particles to agglomerates N2 - The size, surface charge and agglomeration state of nanoparticles under physiological conditions are fundamental parameters to be determined prior to their application in toxicological studies. Although silica-based materials are among the most promising candidates for biomedical applications, more systematic studies concerning the characterisation before performing toxicological studies are necessary. This interest is based on the necessity to elucidate the mechanisms affecting its toxicity. We present here TEM, SAXS and SMPS as a combination of methods allowing an accurate determination of single nanoparticle sizes. For the commercial material, Ludox TM50 single particle sizes around 30 nm were found in solution. DLS measurements of single particles are rather affected by polydispersity and particles concentration but this technique is useful to monitor their agglomeration state. Here, the influence of nanoparticle concentration, ionic strength (IS), pH and bath sonication on the agglomeration behaviour of silica particles in solution has been systematically investigated. Moreover, the colloidal stability of silica particles in the presence of BSA has been investigated showing a correlation between silica and protein concentrations and the formation of agglomerates. Finally, the colloidal stability of silica particles in standard cell culture medium has been tested, concluding the necessity of surface modification in order to preserve silica as primary particles in the presence of serum. The results presented here have major implications on toxicity investigations because silica agglomeration will change the probability and uptake mechanisms and thereby may affect toxicity. KW - Silica KW - Toxicology KW - Agglomeration KW - BSA KW - Nanoparticles KW - Characterisation PY - 2011 U6 - https://doi.org/10.1007/s11051-010-9910-9 SN - 1388-0764 SN - 1572-896X VL - 13 IS - 4 SP - 1593 EP - 1604 PB - Springer AN - OPUS4-21179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drescher, Daniela A1 - Orts Gil, Guillermo A1 - Laube, G. A1 - Natte, Kishore A1 - Veh, R.W. A1 - Ă–sterle, Werner A1 - Kneipp, Janina T1 - Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects N2 - Cell cultures form the basis of most biological assays conducted to assess the cytotoxicity of nanomaterials. Since the molecular environment of nanoparticles exerts influence on their physicochemical properties, it can have an impact on nanotoxicity. Here, toxicity of silica nanoparticles upon delivery by fluid-phase uptake is studied in a 3T3 fibroblast cell line. Based on XTT viability assay, cytotoxicity is shown to be a function of (1) particle concentration and (2) of fetal calf serum (FCS) content in the cell culture medium. Application of dynamic light scattering shows that both parameters affect particle agglomeration. The DLS Experiments verify the stability of the nanoparticles in culture medium without FCS over a wide range of particle concentrations. The related toxicity can be mainly accounted for by single silica nanoparticles and small agglomerates. In contrast, agglomeration of silica nanoparticles in all FCS-containing media is observed, resulting in a decrease of the associated toxicity. This result has implications for the evaluation of the cytotoxic potential of silica nanoparticles and possibly also other nanomaterials in standard cell culture. KW - Agglomeration KW - Cytotoxicity KW - Fibroblast cells KW - Serum proteins KW - Silica nanoparticles PY - 2011 U6 - https://doi.org/10.1007/s00216-011-4893-7 SN - 1618-2642 SN - 1618-2650 VL - 400 IS - 5 SP - 1367 EP - 1373 PB - Springer CY - Berlin AN - OPUS4-23678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -