TY - JOUR A1 - Österle, Werner A1 - Prietzel, Claudia A1 - Dmitriev, Andrey T1 - Investigation of surface film nanostructure and assessment of its impact on friction force stabilization during automotive braking JF - International journal of materials research N2 - The unique nanostructure formed during severe as well as moderate braking on the surface of brake discs was investigated by conventional and analytical Transmission Electron Microscopy. In both cases nanocrystalline magnetite mixed with carbon nanoinclusions and minor amounts of other pad constituents were identified. On the basis of these observations the friction performance of a single micro-contact was simulated with the method of Movable Cellular Automata. Inspite of a simplified nanostructure which was examined in two dimensions only, the calculated mean coefficient of friction fitted well to the value usually demanded for automotive braking. Furthermore, the model predicts that oxide films without soft nanoinclusions are not capable of providing smooth velocity accommodation at the pad–disc interface and thus lead to unstable friction behaviour. KW - Friction KW - Third body film KW - Nanostructure KW - MCA-model KW - EFTEM PY - 2010 SN - 1862-5282 VL - 101 IS - 5 SP - 669 EP - 675 PB - Carl Hanser CY - München AN - OPUS4-22343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Österle, Werner A1 - Dmitriev, Andrey A1 - Kloß, Heinz T1 - Assessment of sliding friction of a nanostructured solid lubricant film by numerical simulation with the method of movable cellular automata (MCA) T2 - WTC 2013 - 5th World tribology congress N2 - Tribofilms formed during dry sliding usually exhibit a nanocrystalline structure and complicated composition. In the present study, tribofilms consisting mainly of a solid lubricant, namely graphite nanoparticles, are considered. Systems providing such tribofilms are candidates for anti-friction applications. Since sliding action always leads to mixing of the materials at both sides of the tribological interface, it was of major interest to study the impact of different amounts of a hard constituent, SiC in the considered case, within the soft matrix systematically. Furthermore, the impact of normal pressure was considered. A mechanically mixed layer was observed for the whole range of normal pressures and SiC volume fractions. The calculated coefficient of friction decreased significantly with increasing thickness of this layer but was only marginally affected by SiC volume fraction, which is good news for anti-friction applications. T2 - WTC 2013 - 5th World tribology congress CY - Torino, Italy DA - 08.09.2013 KW - Friction KW - Third body film KW - Numerical simulation KW - Nanostructure PY - 2013 SP - 1 EP - 4 AN - OPUS4-29659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, Andrey T1 - Functionality of conventional brake friction materials - Perceptions from findings observed at different length scales JF - Wear N2 - Automotive braking is based on dry friction between fixed pads and a rotating disc. Besides macroscopic thermo-physical properties, the development of topographic features on the mesoscopic scale and the nanostructure of the third body formed by wear processes, determine brake performance properties. Whereas modelling on the atomistic scale is suitable to understand mechanisms leading to nanocrystalline surface films, the properties of such films can be assessed best with a model based on movable cellular automata (MCA). It turned out that the presence of at least 10% of soft nanoinclusions is most essential in respect to smooth sliding conditions. It made no major difference whether graphite or copper particles were assumed as soft nanoinclusions. The third body material is not only the stuff which spreads over contact areas, but it also contributes to contact size by wear particle compaction and formation of secondary contact areas. The evolution of contact size is the major feature of mesoscopic modelling and thus it is capable to model and explain dynamic changes of the coefficient of friction (COF) during certain brake operations. Although it is still ambiguous in many cases which feature has the major impact on friction behaviour, the following conclusions can be drawn. The reinforcing ingredients of the pad material serve as primary contact sites and thus define the starting condition for mesoscopic simulations. A certain amount of wear is necessary to provide a third body which is capable to form secondary contact sites and friction layers screening the first body materials. The composition and nanostructure of the third body is important as well, because it determines the friction level and is responsible for smooth sliding conditions. KW - Nanostructure KW - Microstructure KW - Mesostructure KW - Macrostructure KW - Modelling KW - Simulation PY - 2011 DO - https://doi.org/10.1016/j.wear.2010.11.035 SN - 0043-1648 VL - 271 IS - 9-10 SP - 2198 EP - 2207 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-24177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -