TY - JOUR A1 - Ressel, P. A1 - Hao, P.H. A1 - Park, M.H. A1 - Yang, Z. C. A1 - Wang, L.C. A1 - Österle, Werner A1 - Kurpas, P. A1 - Richter, E. A1 - Kuphal, E. A1 - Hartnagel, H.L. T1 - Pd/Sb(Zn) and Pd/Ge(Zn) Ohmic Contacts on p-Type Indium Gallium Arsenide: The Employment of the Solid Phase Regrowth Principle to Achieve Optimum Electrical and Metallurgical Properties JF - Journal of electronic materials N2 - The development of two metallizations based on the solid-phase regrowth principle is presented, namely Pd/Sb(Zn) and Pd/Ge(Zn) on moderately doped In0.53Ga0.47As (p=4×1018 cm-3). Contact resistivities of 2–3×10-7 and 6–7×10-7 ?cm2, respectively, have been achieved, where both systems exhibit an effective contact reaction depth of zero and a Zn diffusion depth below 50 nm. Exhibiting resistivities equivalent to the lowest values of Au-based systems in this doping range, especially Pd/Sb(Zn) contacts are superior to them concerning metallurgical stability and contact penetration. Both metallizations have been successfully applied for contacting the base layer of InP/In0.53Ga0.47As heterojunction bipolar transistors. KW - Ohmic contacts KW - Indium gallium arsenide KW - InP/InGaAs heterojunction bipolar transistor KW - Solid-phase regrowth KW - Pd/Ge contacts KW - Pd/Sb contacts KW - Backside secondary ion mass spectrometry (SIMS) PY - 2000 DO - https://doi.org/10.1007/s11664-000-0189-y SN - 0361-5235 SN - 1543-186X VL - 29 IS - 7 SP - 964 EP - 972 PB - TMS CY - Warrendale, Pa. AN - OPUS4-7642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Ressel, P. T1 - XTEM investigation of Ge/Pd shallow contact to p-IN0.53Ga0.47As JF - Materials science & engineering B N2 - Cross-sectional transmission electron microscopy, in combination with energy dispersive X-ray spectroscopy and focused beam microdiffraction, was applied to study the solid-state reactions taking place during contact formation of the system Ge(115 nm)/Pd(50 nm)—In0.53Ga0.47As. In order to get information about the sequence of the different processes, rapid thermal, annealing experiments in the range 225–400 °C were performed. The following features were observed: at 225 °C Pd reacted with the substrate forming the quaternary phase PdxIn0.53Ga0.47As (x ˜ 4), and with the Ge-layer forming mainly PdGe and Pd2Ge. Between PdxIn0.53Ga0.47As and In0.53Ga0.47As, a 5 nm thick amorphous Pd-In-Ga-As layer remained, indicating that the first reaction step was solid-state amorphization. After annealing at 350 °C, PdxIn0.53Ga0.47As disappeared and regrowth of In0.53Ga0.47As occured. Finally, at 400 °C, residual Ge from the amorphous top layer diffused to the interface and grew epitaxially on the regrown In0.53Ga0.47As, thus separating the III–V compound semiconductor from the Pd-Ge reaction products. The interface remained flat, while only about 10 nm of the active In0.53Ga0.47As layer had been modified during the annealing processes. PY - 1996 DO - https://doi.org/10.1016/0921-5107(96)01580-2 SN - 0921-5107 SN - 1873-4944 VL - 40 IS - 1 SP - 42 EP - 49 PB - Elsevier CY - Amsterdam AN - OPUS4-2513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ressel, P. A1 - Österle, Werner A1 - Urban, Ingrid A1 - Dörfel, Ilona A1 - Klein, A. A1 - Vogel, K. A1 - Kräutle, H. T1 - Transmission electron microscopy study of rapid thermally annealed Pd/Ge contacts on IN0.53Ga0.47As JF - Journal of applied physics PY - 1996 SN - 0021-8979 SN - 1089-7550 VL - 88 SP - 3910 EP - 3914 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-2514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klein, A. A1 - Urban, Ingrid A1 - Ressel, P. A1 - Nebauer, E. A1 - Merkel, U. A1 - Österle, Werner T1 - Preparation, transmission electron microscopy, and microanalytical investigations of metal-III-V semiconductor interfaces JF - Materials characterization PY - 1996 SN - 1044-5803 SN - 1873-4189 VL - 37 SP - 143 EP - 151 PB - Elsevier CY - New York, NY AN - OPUS4-2528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -