TY - JOUR A1 - Österle, Werner A1 - Dörfel, Ilona A1 - Urban, Ingrid A1 - Reier, T. A1 - Schultze, J. T1 - XPS and XTEM study of AlN formation by N+2 implantation of aluminium N2 - X-ray photoelectron spectroscopy (XPS) and cross-sectional transmission electron microscopy (XTEM) were used to study the formation of AlN films by N+2 ion implantation of aluminium at energies of 3 keV and 100 keV. In both cases, a two-stage mechanism was found, comprising first the oriented precipitation of small particles of the hexagonal AlN-phase, followed by growth and coalescence finally forming a continuous AlN-layer while increasing the implantation dose from 1×1017 cm-2 to 2×1017 cm-2. The results of both methods are in excellent agreement and furthermore provide complementary information concerning chemical composition and binding energies as well as microstructural details. KW - AIN KW - Aluminium KW - N2+ KW - Implantation KW - XPS KW - XTEM PY - 1998 U6 - https://doi.org/10.1016/S0257-8972(98)00355-7 SN - 0257-8972 VL - 102 IS - 1-2 SP - 168 EP - 174 PB - Elsevier Science CY - Lausanne AN - OPUS4-2363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reier, T. A1 - Schultze, J.W. A1 - Österle, Werner A1 - Buchal, Ch. T1 - The growth of aligned AIN-nanocrystals in aluminium after nitrogen-ion implantation at 330 K KW - AIN KW - Al2O3 KW - Ion implantation KW - Diffusion KW - Nanocrystals PY - 2001 SN - 0040-6090 VL - 385 SP - 29 EP - 35 PB - Elsevier CY - Amsterdam AN - OPUS4-7643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reier, T. A1 - Schultze, J. W. A1 - Österle, Werner A1 - Buchal, C. T1 - Nucleation and growth of AlN nanocrystallites prepared by N+2 implantation N2 - The formation of AlN films prepared by N+2 ion implantation into aluminium was investigated using X-ray and Auger photoelectron spectroscopy ( XPS, AES) as well as cross-sectional transmission electron microscopy (XTEM). After 100-keV N+2 implantation of low doses (1×1017 cm−2), the formation of hexagonal AlN nanocrystals (crystal size <5 nm, Ncrystal=1017 cm−3) was observed. Their orientation is strongly correlated with the aluminium matrix. With the dose increasing to 3×1017 cm−2, crystal growth follows, finally forming a homogeneous AlN-layer. Furthermore, the diffraction patterns show an increasing amount of misorientation with increasing dose. From the crystal size distribution, we conclude that continuous nucleation takes place. Samples implanted with an energy of 3 keV exhibit analogous behaviour. Nitride growth was further investigated using microstructured AlN formed by 3-keV implantation through movable TEM-masks (structure size: 15–150 mm). In the case of high N+2 doses (D&5×1017 cm−2), AlN is detected by AES in the shielded area at a distance of up to 10 mm from the exposed region. The Diffusion coefficient was calculated to be 10−10 cm2 s−1. The formation of AlN proceeds in two steps. After a continuous nucleation, diffusion-assisted Crystal growth takes place until a homogeneous AlN layer results. KW - Aluminium nitride KW - Ion implantation KW - Nanocrystallites KW - Surface analysis KW - XTEM PY - 1998 SN - 0257-8972 VL - 103-104 SP - 415 EP - 420 PB - Elsevier AN - OPUS4-38539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -