TY - JOUR A1 - Österle, Werner A1 - Kloß, Heinz A1 - Urban, Ingrid A1 - Dmitriev, A.I. T1 - Towards a better understanding of brake friction materials N2 - This work focuses on surface changes induced by repeated brake applications and tries to provide explanations, how such material modifications might affect friction and wear properties of automotive disc brakes. Surface films were investigated locally by transmission electron microscopy (TEM) after having prepared thin cross-sections with a focused ion beam instrument (FIB). Since the observed friction layers revealed a nanocrystalline structure, modelling with the method of movable cellular automata (MCA) was performed by assuming an array of linked nanometer-sized particles. In spite of complicated material combinations at the pad surface, two very characteristic features were always observed at both the pad and disc surface, namely a steel constituent—either ferritic (pad) or pearlitic (disc), partly covered with patches of nanocrystalline iron oxide, on a zone of severe plastic deformation with fragmented grain structure. When using an automata size of 10 nm, reasonable values for the mean coefficient of friction (COF) were obtained, namely 0.35 and 0.85 for oxide-on-oxide and metal-on-metal contacts, respectively. Immediately after brake application mass-mixing and bond-breaking was observed within a narrow zone at both surfaces. KW - Brake pad KW - Brake disc KW - Composite material KW - Friction layer KW - Third body KW - MCA-modelling PY - 2007 U6 - https://doi.org/10.1016/j.wear.2006.12.020 SN - 0043-1648 VL - 263 IS - 7-12 SP - 1189 EP - 1201 PB - Elsevier CY - Amsterdam AN - OPUS4-15735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, A.I. A1 - Kloß, Heinz T1 - Does ultra-mild wear play any role for dry friction applications, such as automotive braking? N2 - Nanostructured third body films and/or storage of wear debris at the surfaces of the first bodies are deemed as prerequisites of sliding under ultra-mild wear conditions. Since such features have been observed experimentally on brake pads and discs, attempts were undertaken to study their sliding behaviour by modelling on the nanoscopic scale with an approach based on Movable Cellular Automata (MCA). The model rendered the possibility to study the influence of different nanostructures systematically and to assess the impact of different brake pad ingredients on the sliding behaviour, velocity accommodation and friction force stabilization at a sliding contact. Besides providing a review on previously published modelling results, some additional new graphs enabling better visualization of dynamic processes are presented. Although ultra-mild wear conditions were considered to be essential for achieving the desired tribological properties, transitions to mesoscopic and macroscopic wear mechanisms were studied as well. The final conclusion is that ultra-mild wear and corresponding smooth sliding behaviour play an important role during automotive braking, even though temporarily and locally events of severe wear may cause friction instabilities, surface damage and release of coarse wear particles. KW - Dry friction KW - Ultra-mild wear KW - Third body KW - MCA-model KW - Simulation PY - 2012 U6 - https://doi.org/10.1039/c2fd00117a SN - 1359-6640 SN - 1364-5498 VL - 156 IS - 0 SP - 159 EP - 171 PB - Soc. CY - Cambridge [u.a.] AN - OPUS4-26822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, A.I. A1 - Kloß, Heinz T1 - Possible impacts of third body nanostructure on friction performance during dry sliding determined by computer simulation based on the method of movable cellular automata N2 - The tribological properties of nanostructured surface films formed during dry sliding, for example during automotive braking, were determined by modelling using the method of movable cellular automata. Starting from a basic model structure, consisting of magnetite with 13% graphite inclusions, the impact of additional soft and hard particles of different size and volume fraction was studied systematically. It was revealed that agglomerates of soft particles decomposed and finally mixed with the oxide in the same way as single nanoparticles. On the other hand, agglomerates of hard particles mixed with the other components without decomposing. Whereas increasing the amount of soft components in the third body lowered the coefficient of friction, the opposite occurred with the hard particles. The boundary conditions for obtaining smooth sliding conditions with minor fluctuations between friction forces at successive time steps could be defined. In addition to features of the nanostructure, the applied normal pressure impacted modelling results. Within the parameter range of smooth sliding behaviour, increasing pressure induced thicker granular interface layers, which lead to a slight decrease of the coefficient of friction. Changing the amount of soft or hard particles did not change this pressure dependency but only the friction level. KW - MCA-modelling KW - Third body KW - Nanoparticles KW - Dry friction PY - 2012 U6 - https://doi.org/10.1016/j.triboint.2011.11.018 SN - 0301-679X VL - 48 SP - 128 EP - 136 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-25469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dmitriev, A.I. A1 - Kloß, Heinz A1 - Österle, Werner T1 - Final outcome of a fundamental research project on tribofilms formed during automotive braking, Part 2: Numerical simulation N2 - In part 1 it was shown that tribofilms usually are 100 nm thick and exhibit a multiphase nanocrystalline structure. The objective of our modelling efforts was to obtain a better understanding of the sliding behaviour and associated friction properties and to study the impact of internal and external parameters on these properties. The method of movable cellular automata (MCA) was used. The third bodies were considered as aggregates of linked nanoparticles which may decompose and form a layer of granulär material, the so-called mechanically mixed layer (MML), if certain fracture criteria are fulfilled. The basic model structure which consists of Fe3Ü4 nanoparticles with 13 % graphite inclusions was used. In order to assess the robustness of the model the following parameter studies were performed. The pressure ränge at an asperity contact was varied between 15 and 50 MPa. The mechanical properties of the oxide were varied between brittle and ductile behaviour corresponding to room temperature and high temperature behaviour. The mechanical properties of the soft ingredient were varied + 50 % of the properties of graphite. The influence T2 - EuroBrake 2014 CY - Lille, France DA - 13.05.2014 KW - Tribofilm KW - Third body KW - Dry friction KW - Modelling KW - Movable cellular automata PY - 2014 SN - 978-0-9572076-4-6 SP - 1 EP - 9 PB - FISITA CY - London AN - OPUS4-35040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A. I. A1 - Österle, Werner A1 - Kloß, Heinz A1 - Orts-Gil, Guillermo T1 - A study of third body behaviour under dry sliding conditions. Comparison of nanoscale modelling with experiment N2 - Automotive brake pads consist of many components but it is still not entirely clear which role each of the elements of this complex composition plays to provide the specified regimes of sliding. This is due to the mutual interaction of multiscale mechanisms, realized during the friction. In this work we have attempted to partly answer this question using computer simulations. Since the simulation allows us to consider various combinations of the structure of the system being simulated ceteris paribus, it becomes possible to understand the role of each constituent sequentially. The main attention is paid to the structure and composition of the thin film that forms on the surface of both bodies as a result of compaction of the wear product, its chemical composition and oxidation. This layer, also named a third body or friction film, differs in composition and microstructure from the two first bodies. We considered a single contact for the steady state sliding when the structure and composition of friction films already are formed. As a modelling tool we used the method of movable cellular automata, which has well proven itself in solving of such tasks. We investigated the influence of modification of the structure and composition of the third body on the features of system behaviour at friction. To assess the adequacy of the numerical model, experimental studies with an artificial third body were also carried out. The Simulation results are in good agreement with experimental data. KW - Third body KW - Dry sliding KW - Mechanically mixed layer KW - Computer simulation PY - 2012 U6 - https://doi.org/10.3176/eng.2012.3.12 SN - 1736-6038 SN - 1736-7522 VL - 18 IS - 3 SP - 270 EP - 278 AN - OPUS4-38545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -