TY - JOUR A1 - Senoner, Mathias A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Österle, Werner A1 - Kaiander, I. A1 - Sellin, R.L. A1 - Bimberg, D. T1 - BAM-L002 - A new type of certified reference material for length calibration and testing of lateral resolution in the nanometre range N2 - A new type of test sample for the determination of lateral resolution in surface analysis is presented. The certified reference material BAM-L002 Nanoscale strip pattern for length calibration and testing of lateral resolution is an embedded cross-section of epitaxially grown layers of AlxGa1-xAs and InxGa1-xAs on GaAs substrate. The surface of the sample provides a flat pattern with strip widths of 0.4-500 nm. The combination of gratings, isolated narrow strips and sharp edges of wide strips offers improved possibilities for the calibration of a length scale, the determination of lateral resolution and the optimization of instrument settings. The feasibility of the reference material for an analysis of lateral resolution is demonstrated for SIMS. PY - 2004 U6 - https://doi.org/10.1002/sia.1936 SN - 0142-2421 SN - 1096-9918 VL - 36 SP - 1423 EP - 1426 PB - Wiley CY - Chichester AN - OPUS4-4696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häusler, Ines A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Dietrich, Paul A1 - Unger, Wolfgang A1 - Österle, Werner T1 - Comprehensive characterization of ball-milled powders simulating a tribofilm system N2 - A model system was used to simulate the properties of tribofilms which form during automotive braking. The model system was prepared by ball milling of a blend of 70 vol.% iron oxides, 15 vol.% molybdenum disulfide and 15 vol.% graphite. The resulting mixture was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and various transmission electron microscopic (TEM) methods, including energy dispersive X-ray spectroscopy (EDXS), high resolution investigations (HRTEM) with corresponding simulation of the HRTEM images, diffraction methods such as scanning nano-beam electron diffraction (SNBED) and selected area electron diffraction (SAED). It could be shown that the ball milling caused a reduction of the grain size of the initial components to the nanometer range. Sometimes even amorphization or partial break-down of the crystal structure was observed for MoS2 and graphite. Moreover, chemical reactions lead to a formation of surface coverings of the nanoparticles by amorphous material, molybdenum oxides, and iron sulfates as derived from XPS. KW - Tribofilm model system KW - Ball milling KW - X-ray powder diffraction KW - Transmission electron microscopy PY - 2016 U6 - https://doi.org/10.1016/j.matchar.2015.11.024 SN - 1044-5803 SN - 1873-4189 VL - 111 SP - 183 EP - 192 PB - Elsevier CY - New York, NY AN - OPUS4-35051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ortel, Erik A1 - Häusler, Ines A1 - Österle, Werner A1 - Narbey, S. A1 - Oswald, F. A1 - Andersen, I. H. A1 - Holzweber, Markus A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan T1 - In-depth structural and chemical characterization of engineered TiO2 films N2 - Analytical routines for a comprehensive in-depth morphological, structural, and chemical characterization of functionalized TiO2 films by using different state-of-the-art analytical techniques are presented and discussed with the main objective to identify potential reference TiO2 coating parameters able to be certified at a later stage. TiO2 films fabricated by two different synthetic procedures as representative for two main large-scale applications were selected: (i) pulsed d.c. magnetron sputtering for photocatalytic applications and (ii) screen printing from preformed anatase nanoparticles. The screen-printed films were further loaded with a sensitizing dye for application as a dye-sensitized solar cell. Film properties such as microstructure and crystallographic texture of pulsed d.c. magnetron sputtering synthesized films were systematically studied by means of scanning nanobeam electron diffraction in a transmission electron microscope and the surface and inner morphology by scanning electron microscopy. The dye distribution over the depth of screen-printed TiO2 layers was analyzed before and after dye-loading by means of energy dispersive X-ray spectroscopy at scanning electronmicroscope, Auger electron spectroscopy and time-of-flight secondary ion mass spectrometry. The long-term goal of the present study is the improvement of quality of the TiO2 film parameters as measured by using different types of reference TiO2 coatings having specific parameters certified. T2 - 16th European Conference on Applications of Surface and Interface Analysis ECASIA'15 CY - Granada, Spain DA - 28.09.2015 KW - Mapping KW - Line scan KW - Depth profiling KW - TiO2 films KW - Crystallinity KW - Ru dye sensitizer PY - 2016 U6 - https://doi.org/10.1002/sia.5966 SN - 0142-2421 SN - 1096-9918 VL - 48 SP - 664 EP - 669 PB - John Wiley & Sons, Ltd. AN - OPUS4-36791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Senoner, Mathias A1 - Maaßdorf, A. A1 - Rooch, Heidemarie A1 - Österle, Werner A1 - Malcher, M. A1 - Schmidt, M. A1 - Kollmer, F. A1 - Paul, D. A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Unger, Wolfgang T1 - Lateral resolution of nanoscaled images delivered by surface-analytical instruments: application of the BAM-L200 certified reference material and related ISO standards N2 - The certified reference material BAM-L200, a nanoscale stripe pattern for length calibration and specification of lateral resolution, is described. BAM-L200 is prepared from a cross-sectioned epitaxially grown layer stack of AlxGa1–xAs and InxGa1–xAs on a GaAs substrate. The surface of BAM-L200 provides a flat pattern with stripe widths ranging down to 1 nm. Calibration distances, grating periods and stripe widths have been certified by TEM with traceability to the length unit. The combination of gratings, isolated narrow stripes and sharp edges of wide stripes offers plenty of options for the determination of lateral resolution, sharpness and calibration of length scale at selected settings of imaging surface-analytical instruments. The feasibility of the reference material for an analysis of the lateral resolution is demonstrated in detail by evaluation of ToF-SIMS, AES and EDX images. Other applications developed in the community are summarized, too. BAM-L200 fully supports the implementation of the revised International Standard ISO 18516 (in preparation) which is based on knowledge outlined in the Technical Report ISO/TR 19319:2013. KW - AES KW - BAM-L200 KW - CRM KW - EDX KW - Imaging KW - Lateral resolution KW - Sharpness KW - Standardisation KW - STXM KW - ToF-SIMS KW - XPEEM KW - XPS KW - Certified reference material KW - Imaging surface analysis PY - 2015 U6 - https://doi.org/10.1007/s00216-014-8135-7 SN - 1618-2642 SN - 1618-2650 VL - 407 IS - 11 SP - 3211 EP - 3217 PB - Springer CY - Berlin AN - OPUS4-33033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Senoner, Mathias A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Österle, Werner A1 - Kaiander, I. A1 - Sellin, R. L. A1 - Bimberg, D. ED - Wilkening, G. ED - Koenders, L. T1 - Testing the Lateral Resolution in the Nanometre Range with a New Type of Certified Reference Material T2 - NanoScale 2004 Seminar ; 6th Seminar on Quantitative Microscopy ; 2nd Seminar on Nanoscale Calibration Standards and Methods CY - Braunschweig, Germany DA - 2004-03-25 KW - Laterale Auflösung KW - Nanometrologie KW - Nanotechnologie KW - Oberflächenanalytik KW - Zertifiziertes Referenzmaterial PY - 2004 SN - 3-527-40502-X U6 - https://doi.org/10.1002/3527606661.ch21 SP - 282 EP - 294 PB - Wiley-VCH CY - Weinheim AN - OPUS4-7541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -