TY - JOUR A1 - Orts Gil, Guillermo A1 - Natte, Kishore A1 - Österle, Werner T1 - Multi-parametric reference nanomaterials for toxicology: state of the art, future challenges and potential candidates N2 - A major requirement for the validation of methods assessing the risk associated with engineered nanoparticles (ENPs) is the use of reference materials (RMs). In the present contribution we review available RMs, ongoing projects and characterisation trends in the field. The conclusion is that actual approaches to RMs mostly deal with metrological considerations about single properties of the ENPs, typically their primary size, which can hardly be representative of nanoparticles characteristics in real testing media and therefore, not valid for reliable and comparable toxicological studies. As an alternative, we discussed the convenience and feasibility of establishing multi-parametric RMs for a series of ENPs, focusing on silica nanoparticles (SNPs). As a future perspective, the need to develop RMs based on hybrid nanoparticles is also discussed. KW - Referenzmaterialien KW - Nanopartikel KW - Toxikologie KW - Metrologie PY - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-292997 SN - 2046-2069 VL - 3 IS - 40 SP - 18202 EP - 18215 PB - RSC Publishing CY - London AN - OPUS4-29299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Orts Gil, Guillermo A1 - Natte, Kishore A1 - Thiermann, Raphael A1 - Girod, Matthias A1 - Rades, Steffi A1 - Kalbe, Henryk A1 - Thünemann, Andreas A1 - Maskos, M. A1 - Österle, Werner T1 - On the role of surface composition and curvature on biointerface formation and colloidal stability of nanoparticles in a protein-rich model system N2 - The need for a better understanding of nanoparticle–protein interactions and the mechanisms governing the resulting colloidal stability has been emphasised in recent years. In the present contribution, the short and long term colloidal stability of silica nanoparticles (SNPs) and silica–poly(ethylene glycol) nanohybrids (Sil–PEG) have been scrutinised in a protein model system. Well-defined silica nanoparticles are rapidly covered by bovine serum albumin (BSA) and form small clusters after 20 min while large agglomerates are detected after 10 h depending on both particle size and nanoparticle–protein ratio. Oppositely, Sil–PEG hybrids present suppressive protein adsorption and enhanced short and long term colloidal stability in protein solution. No critical agglomeration was found for either system in the absence of protein, proving that instability found for SNPs must arise as a consequence of protein adsorption and not to high ionic environment. Analysis of the small angle X-ray scattering (SAXS) structure factor indicates a short-range attractive potential between particles in the silica-BSA system, which is in good agreement with a protein bridging agglomeration mechanism. The results presented here point out the importance of the nanoparticle surface properties on the ability to adsorb proteins and how the induced or depressed adsorption may potentially drive the resulting colloidal stability. KW - Nanoparticles KW - Protein corona KW - Biointerface KW - BSA KW - PEG KW - Colloidal stability PY - 2013 U6 - https://doi.org/10.1016/j.colsurfb.2013.02.027 SN - 0927-7765 SN - 1873-4367 VL - 108 SP - 110 EP - 119 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-30100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Natte, Kishore A1 - Friedrich, Jörg Florian A1 - Wohlrab, Sebastian A1 - Lutzki, J. A1 - von Klitzing, R. A1 - Österle, Werner A1 - Orts-Gil, Guillermo T1 - Impact of polymer shell on the formation and time evolution of nanoparticle-protein corona N2 - The study of protein corona formation on nanoparticles (NPs) represents an actual main issue in colloidal, biomedical and toxicological sciences. However, little is known about the influence of polymer shells on the formation and time evolution of protein corona onto functionalized NPs. Therefore, silicapoly(ethylene glycol) core–shell nanohybrids (SNPs@PEG) with different polymer molecular weights (MW) were synthesized and exhaustively characterized. Bovine serum albumin (BSA) at different concentrations (0.1–6 wt%) was used as model protein to study protein corona formation and time evolution. For pristine SNPs and SNPs@PEG (MW = 350 g/mol), zeta potential at different incubation times show a dynamical evolution of the nanoparticle–protein corona. Oppositely, for SNPs@PEG with MW ≥2000 g/mol a significant suppression of corona formation and time evolution was observed. Furthermore, AFM investigations suggest a different orientation (side-chain or perpendicular) and Penetration depth of BSA toward PEGylated surfaces depending on the polymer length which may explain differences in protein corona evolution. KW - Nanoparticles KW - Silica KW - PEGylation KW - Protein corona KW - BSA KW - Biointerface PY - 2013 U6 - https://doi.org/10.1016/j.colsurfb.2012.11.019 SN - 0927-7765 VL - 104 SP - 213 EP - 220 PB - Elsevier AN - OPUS4-38547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -