TY - JOUR A1 - Orts Gil, Guillermo A1 - Natte, Kishore A1 - Thiermann, Raphael A1 - Girod, Matthias A1 - Rades, Steffi A1 - Kalbe, Henryk A1 - Thünemann, Andreas A1 - Maskos, M. A1 - Österle, Werner T1 - On the role of surface composition and curvature on biointerface formation and colloidal stability of nanoparticles in a protein-rich model system N2 - The need for a better understanding of nanoparticle–protein interactions and the mechanisms governing the resulting colloidal stability has been emphasised in recent years. In the present contribution, the short and long term colloidal stability of silica nanoparticles (SNPs) and silica–poly(ethylene glycol) nanohybrids (Sil–PEG) have been scrutinised in a protein model system. Well-defined silica nanoparticles are rapidly covered by bovine serum albumin (BSA) and form small clusters after 20 min while large agglomerates are detected after 10 h depending on both particle size and nanoparticle–protein ratio. Oppositely, Sil–PEG hybrids present suppressive protein adsorption and enhanced short and long term colloidal stability in protein solution. No critical agglomeration was found for either system in the absence of protein, proving that instability found for SNPs must arise as a consequence of protein adsorption and not to high ionic environment. Analysis of the small angle X-ray scattering (SAXS) structure factor indicates a short-range attractive potential between particles in the silica-BSA system, which is in good agreement with a protein bridging agglomeration mechanism. The results presented here point out the importance of the nanoparticle surface properties on the ability to adsorb proteins and how the induced or depressed adsorption may potentially drive the resulting colloidal stability. KW - Nanoparticles KW - Protein corona KW - Biointerface KW - BSA KW - PEG KW - Colloidal stability PY - 2013 U6 - https://doi.org/10.1016/j.colsurfb.2013.02.027 SN - 0927-7765 SN - 1873-4367 VL - 108 SP - 110 EP - 119 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-30100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -