TY - JOUR A1 - Österle, Werner A1 - Dörfel, Ilona A1 - Urban, Ingrid A1 - Reier, T. A1 - Schultze, J. T1 - XPS and XTEM study of AlN formation by N+2 implantation of aluminium N2 - X-ray photoelectron spectroscopy (XPS) and cross-sectional transmission electron microscopy (XTEM) were used to study the formation of AlN films by N+2 ion implantation of aluminium at energies of 3 keV and 100 keV. In both cases, a two-stage mechanism was found, comprising first the oriented precipitation of small particles of the hexagonal AlN-phase, followed by growth and coalescence finally forming a continuous AlN-layer while increasing the implantation dose from 1×1017 cm-2 to 2×1017 cm-2. The results of both methods are in excellent agreement and furthermore provide complementary information concerning chemical composition and binding energies as well as microstructural details. KW - AIN KW - Aluminium KW - N2+ KW - Implantation KW - XPS KW - XTEM PY - 1998 DO - https://doi.org/10.1016/S0257-8972(98)00355-7 SN - 0257-8972 VL - 102 IS - 1-2 SP - 168 EP - 174 PB - Elsevier Science CY - Lausanne AN - OPUS4-2363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schempp, Philipp A1 - Cross, C.E. A1 - Pittner, Andreas A1 - Oder, Gabriele A1 - Neumann, R. S. A1 - Rooch, Heidemarie A1 - Dörfel, Ilona A1 - Österle, Werner A1 - Rethmeier, Michael T1 - Solidification of GTA aluminium weld metal: Part I - Grain morphology dependent upon alloy composition and grain refiner content N2 - The solidification conditions during welding strongly influence the weid metal microstructure and mechanical properties of a weid. In the first part of this study, the grain morphology of gas tungsten arc (GTA) bead-on-plate welds was investigated for the aluminum Alloys 1050A (Al 99.5), 6082 (Al SifMgMn), and 5083 (AI Mg4.5Mn0.7). The experiments revealed that increasing welding speed and alloy content allow the growth of small, equiaxed grains, particularly in the weid center. Furthermore, increasing grain refiner additions led to a Strong reduction of the weid metal mean grain size and hence facilitated the columnar to equiaxed transition (CET). In addition, wavelength dispersive X-ray spectroscopy (WDS) and transmission electron microscopy (TEM) analysis revealed in the weid metal TiB2 particles that were surrounded by Al3Ti. This suggests the duplex nucleation theory for nucleation of aluminum grains in GTA weid metal. KW - Aluminium KW - Gas tungsten arc welding (GTAW) KW - Grain refinement KW - Columnar to equiaxed transition (CET) KW - Epitaxial nucleation KW - Duplex nucleation theory PY - 2014 SN - 0043-2296 SN - 0096-7629 VL - 93 SP - 53-s EP - 59-s PB - American Welding Society CY - New York, NY AN - OPUS4-30413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -