TY - CONF A1 - Cristol, A.L. A1 - Desplanques, Y. A1 - Ă–sterle, Werner A1 - Degallaix, G. T1 - Coupling between thermal localisation and friction mechanisms: heat accumulation effect T2 - JEF 2010 - 6th European conference on braking (Proceedings) N2 - Heat accumulation induced by a succession of railway brakings leads to changes of the friction conditions occurring in pad-disc contact. Infrared thermography observations show a progressive increase of surface temperature over the succession, as well as a modification of the hot band migration phenomenon. From a tribological point of view, the heat accumulation, accompanied by a wear increase, progressively modifies the friction behaviour from one braking to the next. Post-mortem observations of pads are performed on surface by scanning electron microscopy and in depth after Focus Ion Beam cut by scanning ion microscopy. Observations show that, with heat accumulation, the third body quantity rises inside the contact, in accordance with wear increase. It is concluded that source flows of third body, which increase with temperature, feed aplenty the contact and modify its load-bearing capacity. T2 - JEF 2010 - 6th European conference on braking CY - Lille, France DA - 2010-11-24 KW - Successive braking KW - Heat accumulation KW - Thermal localisation KW - Wear KW - SEM KW - FIB PY - 2010 SP - 61 EP - 69 AN - OPUS4-22729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dmitriev, A. I. A1 - Ă–sterle, Werner T1 - Sliding simulation of automotive brake primary contact with variable amounts of copper and graphite nanoparticles T2 - ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2016 N2 - Copper is one of the most important components in brake pads and its amount can reach up to 14%. In spite of a number of positive features copper usage in brake pad formulations has recently become the subject of considerable discussions, primarily due to concerns about potential risks related to environmental impacts of copper particles. So, for developing new pad formulations with possible replacements of copper content, it is very important to understand the functionality of copper additions to brake friction materials. In the paper theoretical investigation of the role of copper as a pad ingredient was carried out on the basis of modelling by the method of movable cellular automata (MCA). In the study the concentration of copper particles in a Fe3O4-matrix was varied. The sliding simulations were performed while assuming material properties at 500 degrees C in order to assess the beneficial role of copper during severe braking conditions corresponding to fading cycles during dynamometer testing. T2 - International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures CY - Tomsk, Russia DA - 19.09.2016 KW - Polymer matrix composite KW - Silica nanoparticles KW - Friction KW - Wear PY - 2016 DO - https://doi.org/10.1063/1.4966337 VL - 1783 SP - 020044-1 EP - 020044-4 AN - OPUS4-38933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -