TY - CONF A1 - Weber, Mike A1 - Zencker, Uwe A1 - Wolff, Dietmar A1 - Völzke, Holger A1 - Herbrich, Uwe A1 - Nagelschmidt, Sven T1 - Numerical analysis of cask accident scenarios in storage facilities T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials (Proceedings) N2 - Existing spent nuclear fuel (SF) and high active waste (HAW) management policies and practices worldwide are the result of past presumptions that sufficient reprocessing and/or disposal capacity would be available in the near term. Consequently, in the past many countries have developed specific solutions for different periods of time due to their individual national nuclear policies. In Germany the concept of dry interim storage in dual purpose metal casks before disposal is being pursued for SF and HAW management and transport and storage licenses have been issued accordingly. The current operation licenses for existing storage facilities have been granted for a storage period of up to 40 years. This concept has demonstrated its suitability for over 20 years so far. Relevant safety requirements have been assessed for the short-term as well as for the long-term for site-specific operational and accidental storage conditions. But in the meantime significant delays in the national repository siting procedure occurred which will make extended storage periods necessary in the future. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 KW - Numerical analysis KW - Interim storage KW - Cask accident scenario PY - 2013 SP - Session H, Paper 202, 1 EP - 9 PB - Omnipress AN - OPUS4-30227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zencker, Uwe A1 - Wolff, Dietmar A1 - Völzke, Holger A1 - Herbrich, Uwe A1 - Nagelschmidt, Sven T1 - Numerical analysis of cask accident scenarios in storage facilities T2 - WM2014 Conference (Proceedings) N2 - Mechanical drop test scenarios for Type B (U) packages according to the IAEA regulations have to be carried out onto the so-called “unyielding target” (usually with cask impact limiters) and onto the puncture bar respectively. They are predefined and do not require any further investigation of scenarios that really could happen on transportation routes. Cask accident scenarios in the framework of approval procedures for interim storage sites are derived from a detailed analysis of the handling procedures necessary from arrival of cask at the site to its storing position. In that case, casks are usually handled without impact limiters. Dependent on possible drop heights, drop positions and floor properties, conservative cask accident scenarios are derived for further safety proofs. According to the mechanical assessment concept of the considered approval procedure numerical calculations have to be provided by the applicant to demonstrate mechanical cask safety. Stresses and strains in the cask body as well as in the lid System have to be identified and assessed. Using the example of a 3-mvertical-drop of a transport and storage cask for spent fuel elements onto the floor construction made of damping concrete covered by screed, BAM developed a finite element model. The finite element code ABAQUS/Explicit™ was used. Results of experimental investigations are not available. Therefore parameter studies are necessary to identify the sensitivity of the finite element model to significant Parameters and to verify the finite element models according to the requirements of the Guidelines for the Numerical Safety Analyses for the Approval of Transport and Storage Casks for Radioactive Materials (BAM GGR-008). The paper describes the modeling of the material behavior and attachment of bottom side cask components. Questions concerning the modeling of a crack length limiting reinforcement in the screed layer are discussed. The influence of the mesh density of the screed layer and its strength is considered as well. Finally, the developed finite element model can be used for a numerical safety assessment. It can help to understand the complex mechanisms of the interaction between the cask components and floor construction. T2 - WM2014 Conference CY - Phoenix, Arizona, USA DA - 02.03.2014 KW - Numerical analysis KW - Interim storage KW - Cask accident scenario PY - 2014 SN - 978-0-9836186-3-8 SP - Paper 14541, 1 EP - 12 AN - OPUS4-31516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zencker, Uwe A1 - Wolff, Dietmar A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Völzke, Holger A1 - Schulze, Dietmar T1 - Numerical simulation of the behaviour of elastomer seals under consideration of time dependent effects T2 - RAMTRANSPORT 2015 - International conference on the radioactive materials transport and storage (Proceedings) N2 - Due to delays in the site-selection procedure to establish a deep geological repository for spent nuclear fuel and high level waste and in construction of the already licensed Konrad-repository for low and intermediate level waste without heat generation, extended periods of interim storage become more relevant in Germany. BAM is involved in most of the cask licensing procedures and especially responsible for the evaluation of cask-related long-term safety issues. The long-term performance of elastomer seals for lid Systems of transport and storage casks whether used as auxiliary seals in spent fuel caslcs or as primary seals for low and intermediate level waste packages is an important issue in this context (Jaunich, 2013; Jaunich, 2014; Kömmling, 2015). The polymeric structure of these seals causes a complex mechanical behaviour with time-dependent elasticity reduction and loss of elastic recovery. The paper presents first results of a comprehensive test Programme consisting of several static and dynamic mechanical short- and long-term tests which have been carried out at BAM on specimens made of representative types of elastomers, fluorocarbon rubber (FKM) and ethylene propylene diene rubber (EPDM). The investigation of the test results used to identify material models and their Parameters as well as the development of two finite element models for the numerical Simulation of tension and compression tests using the finite element code ABAQUS® are described. The calculation results are presented in comparison to the test results. The influence of important material and test parameters was investigated and discussed in sensitivity analyses. T2 - RAMTRANSPORT 2015 - International conference on the radioactive materials transport and storage CY - Oxford, UK DA - 19.05.2015 KW - Numerical analysis KW - Extended interim storage KW - Elastomer seals PY - 2015 SP - Session 4, Paper 28, 1 EP - 9 AN - OPUS4-33832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -