TY - JOUR A1 - Schlegel, Moritz-Caspar A1 - Többens, D. A1 - Svetogorov, R. A1 - Krüger, M. A1 - Stock, N. A1 - Reinsch, H. A1 - Wallacher, D. A1 - Stewart, R. A1 - Russina, M. T1 - Conformation-controlled hydrogen storage in the CAU-1 metal-organic framework JF - Physical Chemistry Chemical Physics N2 - We have studied the mechanism of hydrogen storage in the aluminium based metal–organic framework CAU-1 or [Al4(OH)2 OCH3)4(O2C-C6H3NH2-CO2)3] using a complementary multidisciplinary approach of volumetric gas sorption analysis, in situ neutron diffraction and spectroscopy and ab initio calculations. The structure of CAU-1 forms two different types of microporous cages: (i) an octahedral cage with a diameter of about 10 Å and (ii) a tetrahedral cage with a diameter of about 5 Å. Though all metal sites of CAU-1 are fully coordinated, the material exhibits relatively high storage capacities, reaching 4 wt% at a temperature of 70 K. Our results reveal that hydrogen sorption is dominantly driven by cooperative guest–guest interactions and interactions between guest hydrogen molecules and organic linkers. The adsorption of hydrogen on the organic linkers leads to the contraction of the host framework structure and as a result to changes in the electronic potential surface inside the pores. This, in turn, leads to cooperative rearrangement of the molecules inside the pores and to the formation of additionally occupied positions, increasing hydrogen uptake. At the final stage we observe the formation of solid amorphous hydrogen inside the pores. KW - Hydrogen storage KW - MOF KW - X-ray diffraction KW - Neutron diffraction KW - Neutron scattering PY - 2016 DO - https://doi.org/10.1039/c6cp05310f SN - 1463-9076 SN - 1463-9084 VL - 18 SP - 29258 EP - 29267 PB - The Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-37794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlegel, Moritz-Caspar A1 - Russina, M. A1 - Günther, G. A1 - Grzimek, V. A1 - Gainov, R. A1 - Drescher, L. A1 - Kaulich, T. A1 - Graf, W. A1 - Urban, B. A1 - Daske, A. A1 - Grotjahn, K. A1 - Hellhammer, R. A1 - Buchert, G. A1 - Kutz, H. A1 - Rossa, L. A1 - Sauer, O.-P. A1 - Fromme, M. A1 - Wallacher, D. A1 - Kiefer, K. A1 - Klemke, B. A1 - Grimm, N. A1 - Gerischer, S. A1 - Tsapatsaris, N. A1 - Rolfs, K. T1 - Upgrade project NEAT02016 at Helmholtz Zentrum Berlin – What can be done on the medium power neutron source JF - Physica B: Condensed Matter N2 - The neutron time-of-flight spectrometer NEAT has a long history of successful applications and is best suited to probe dynamic phenomena directly in the large time domain 10(-14) - 10(-10) s and on the length scale ranging from 0.05 to up to about 5 nm. To address user community needs for more powerful instrumental capabilities, a concept of the full upgrade of NEAT has been proposed. The upgrade started in 2010 after a rigorous internal and external selection process and resulted in 300-fold neutron count rate increase compared to NEAT01995. Combined with new instrumental and sample environmental capabilities the upgrade allows NEAT to maintain itself at the best world class level and provide an outstanding experimental tool for a broad range of scientific applications. The advanced features of the new instrument include an integrated guide-chopper system that delivers neutrons with flexible beam properties: either highly homogeneous beam with low divergence suitable for single crystals studies or "hot-spot" neutron distribution serving best small samples. Substantial increase of the detector angle coverage is achieved by using 416 He-3 position sensitive detectors. Placed at 3m from the sample, the detectors cover 20m(2) area and are equipped with modern electronics and DAQ using event recording techniques. The installation of hardware has been completed in June 2016 and on January 23, 2017 NEAT has welcomed its first regular users who took advantage of the high counting rate, broad available range of incoming neutron wavelengths and high flexibility of NEAT. Here we present details of NEAT upgrade, measured instrument characteristics and show first experimental results. KW - Neutron scattering KW - Neutron spectroscopy KW - Instrumentation KW - Time-of-flight neutron spectroscopy KW - Nanoscale dynamics PY - 2017 DO - https://doi.org/10.1016/j.physb.2017.12.026 SN - 0921-4526 VL - 551 SP - 506 EP - 511 PB - Elsevier B.V. AN - OPUS4-43514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -