TY - JOUR A1 - Zeynalov, Eldar A1 - Wagner, M. A1 - Friedrich, Jörg Florian A1 - Magerramova, M. A1 - Salmanova, N. A1 - Hidde, Gundula A1 - Meyer-Plath, A. T1 - The peculiar behavior of functionalized carbon nanotubes in hydrocarbons and polymeric oxidation environments N2 - It has been shown that selected types of substituents are able to vary the oxidative behavior of multi-walled carbon nanotubes. Such substituents investigated were sterically hindered secondary amino groups bonded in grafted piperidine units and covalently bonded bromine groups. Their interference and activity was preliminary determined in the model cumene and then in oil diesel fraction and low density polyethylene oxidation reactions. Results obtained indicate that chemical linking of amine moieties containing –NH groups directly to the carbon nanotubes core significantly increases their intrinsic anti-oxidative capacity while the grafting of Br-groups provokes the opposite functioning of the pristine samples. This inference was proved by thermogravimetric and differential thermal analysis of the polyethylene composites and experiments on profound aerobic oxidation of petroleum naphthenic fraction derived from the commercial Baku oils blend diesel cut. KW - Multi-walled carbon nanotubes KW - Amine derivatives KW - Plasma-chemical technique KW - Brominated carbon nanotubes KW - Rate of model oxidation KW - Anti-oxidative efficiency KW - Catalytic activity KW - Inhibition rate constant KW - Photoelectron spectroscopy KW - Oxidation KW - Polyethylene composites KW - Oil diesel fraction PY - 2016 U6 - https://doi.org/10.1080/01694243.2016.1239304 SN - 0169-4243 SN - 1568-5616 VL - 31 IS - 9 SP - 988 EP - 1006 AN - OPUS4-39894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurzler, Nina A1 - Schütter, J. D. A1 - Wagner, R. A1 - Dimper, M. A1 - Lützenkirchen-Hecht, D. A1 - Özcan Sandikcioglu, Özlem T1 - Trained to corrode: Cultivation in the presence of Fe(III) increases the electrochemical activity of iron reducing bacteria – An in situ electrochemical XANES study N2 - This paper reports results from in situ electrochemical X-ray absorption near-edge spectroscopy (XANES) studies of the corrosion processes on model thin iron films in the presence of iron reducing bacteria Shewanella putrefaciens. Here we investigate the electrochemical activity of two cultures grown in the presence and absence of Fe(III) citrate in the culture medium. The XANES spectra and the OCP data of the Fe sample incubated with the culture grown in absence of Fe(III) did not show any significant changes during twenty hours of monitoring. In the case of the culture grown in Fe(III) containing medium, an accelerated dissolution of the iron film was observed together with the formation of a mixed Fe(II)-Fe(III) hydroxide surface layer. The open circuit potential (OCP) steadily approached the free corrosion potential of iron in neutral chloride containing electrolytes, indicating a continuous dissolution process without passivation. KW - Microbiologically influenced corrosion KW - XANES KW - Electrochemistry KW - Iron reducing bacteria PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-505732 VL - 112 SP - 106673 PB - Elsevier B.V. AN - OPUS4-50573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weber, A. A1 - von Randow, M. A1 - Voigt, A.-L. A1 - von der Au, Marcus A1 - Fischer, E. A1 - Meermann, Björn A1 - Wagner, M. T1 - Ingestion and toxicity of microplastics in the freshwater gastropodLymnaea stagnalis: No microplastic-induced effects alone or incombination with copper N2 - The interaction of microplastics with freshwater biota and their interaction with other stressors is still not very well understood. Therefore, we investigated the ingestion, excretion and toxicity of microplastics in the freshwater gastropod Lymnaea stagnalis. MP ingestion was analyzed as tissues levels in L. stagnalis after 6–96 h of exposure to 5–90 μm spherical polystyrene (PS) microplastics. To understand the excretion, tissue levels were determined after 24 h of exposure followed by a 12 h–7 d depuration period. To assess the toxicity, snails were exposed for 28 d to irregular PS microplastics (<63 μm, 6.4–100,000 particles mL−1), both alone and in combination with copper as additional stressor. To compare the toxicity of natural and synthetic particles, we also included diatomite particles. Microplastics ingestion and excretion significantly depended on the particle size and the exposure/depuration duration. An exposure to irregular PS had no effect on survival, reproduction, energy reserves and oxidative stress. However, we observed slight effects on immune cell phagocytosis. Exposure to microplastics did not exacerbate the reproductive toxicity of copper. In addition, there was no pronounced difference between the effects of microplastics and diatomite. The tolerance towards microplastics may originate from an adaptation of L. stagnalis to particle-rich environments or a general stress resilience. In conclusion, despite high uptake rates, PS fragments do not appear to be a relevant stressor for stress tolerant freshwater gastropods considering current environmental levels of microplastics. KW - Lymnaea stagnalis KW - Microplastic-induced effects KW - Mixture toxicity PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-513551 VL - 263 SP - 128040 PB - Elsevier Ltd. AN - OPUS4-51355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wagner, Sabine A1 - Zapata, Carlos A1 - Wan, Wei A1 - Gawlitza, Kornelia A1 - Weber, M. A1 - Rurack, Knut T1 - Role of Counterions in Molecularly Imprinted Polymers for Anionic Species N2 - Small-molecule oxoanions are often imprinted noncovalently as carboxylates into molecularly imprinted polymers (MIPs), requiring the use of an organic counterion. Popular species are either pentamethylpiperidine (PMP) as a protonatable cation or tetraalkylammonium (TXA) ions as permanent cations. The present work explores the influence of the TXA as a function of their alkyl chain length, from methyl to octyl, using UV/vis absorption, fluorescence titrations, and HPLC as well as MD simulations. Protected phenylalanines (Z-L/D-Phe) served as templates/analytes. While the influence of the counterion on the complex stability constants and anion-induced spectral changes shows a monotonous trend with increasing alkyl chain length at the prepolymerization stage, the cross-imprinting/rebinding studies showed a unique pattern that suggested the presence of adaptive cavities in the MIP matrix, related to the concept of induced fit of enzyme−substrate interaction. Larger cavities formed in the presence of larger counterions can take up pairs of Z-X-Phe and smaller TXA, eventually escaping spectroscopic detection. Correlation of the experimental data with the MD simulations revealed that counterion mobility, the relative distances between the three partners, and the hydrogen bond lifetimes are more decisive for the response features observed than actual distances between interacting atoms in a complex or the orientation of binding moieties. TBA has been found to yield the highest imprinting factor, also showing a unique dual behavior regarding the interaction with template and fluorescent monomer. Finally, interesting differences between both enantiomers have been observed in both theory and experiment, suggesting true control of enantioselectivity. The contribution concludes with suggestions for translating the findings into actual MIP development. KW - Anion receptors KW - Fluorescence sensing KW - Molecular dynamics simulations KW - Molecularly imprinted polymers KW - Rational design PY - 2018 U6 - https://doi.org/10.1021/acs.langmuir.8b00500 SN - 0743-7463 VL - 34 IS - 23 SP - 6963 EP - 6975 PB - American Chemical Society CY - Washington, D.C. AN - OPUS4-45399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wagner, R. A1 - Wan, Wei A1 - Biyikal, Mustafa A1 - Benito-Pena, E. A1 - Moreno-Bondi, M.C. A1 - Lazraq, I. A1 - Rurack, Knut A1 - Sellergren, B. T1 - Synthesis, spectroscopic, and analyte-responsive behavior of a polymerizable naphthalimide-based carboxylate probe and molecularly imprinted polymers prepared thereof N2 - A naphthalimide-based fluorescent indicator monomer 1 for the integration into chromo- and fluorogenic molecularly imprinted polymers (MIPs) was synthesized and characterized. The monomer was equipped with a urea binding site to respond to carboxylate-containing guests with absorption and fluorescence changes, namely a bathochromic shift in absorption and fluorescence quenching. Detailed spectroscopic analyses of the title compound and various models revealed the signaling mechanism. Titration studies employing benzoate and Z-ʟ-phenylalanine (Z-ʟ-Phe) suggest that indicator monomers such as the title compound undergo a mixture of deprotonation and complex formation in the presence of benzoate but yield hydrogen-bonded complexes, which are desirable for the molecular imprinting process, with weakly basic guests like Z-ʟ-Phe. Compound 1 could be successfully employed in the synthesis of monolithic and thin-film MIPs against Z-ʟ-Phe, Z-L-glutamic acid, and penicillin G. Chromatographic assessment of the selectivity features of the monoliths revealed enantioselective discrimination and clear imprinting effects. Immobilized on glass coverslips, the thin-film MIPs of 1 displayed a clear signaling behavior with a pronounced enantioselective fluorescence quenching dependence and a promising discrimination against cross-analytes. KW - Aminosäuren KW - Enantioselektivität KW - Fluoreszenz KW - Molekular geprägte polymere KW - Sensorfilme PY - 2013 U6 - https://doi.org/10.1021/jo3019522 SN - 0022-3263 SN - 1520-6904 VL - 78 IS - 4 SP - 1377 EP - 1389 PB - American Chemical Society CY - Washington, DC AN - OPUS4-27741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wagner, M.H. A1 - Wu, W. A1 - Liu, Y. A1 - Qian, Q. A1 - Zhang, Y. A1 - Mielke, Werner T1 - Study on Phase Separation of PET/PEN Blends by Dynamic Rheology N2 - Blends of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalate) (PEN) were processed into biaxially drawn films, and samples taken from the bi-oriented films were then investigated by dynamic rheology experiments in the melt state. Storage modulus G and loss modulus G were determined in the frequency range of 10-2-102 rad/s at temperatures between 260 and 300°C. Although the time-temperature superposition (TTS) principle was found to hold in the high frequency regime, a breakdown of TTS was observed at low frequencies, and the terminal behavior of the storage modulus G of the blends departs drastically from the terminal behavior observed for the blend components. This is caused by interfacial surface tension effects. The results indicate that despite the effect of transesterification reactions, the PET/PEN blend systems investigated consist of a microseparate phase of PEN platelets in a matrix of PET. This morphology is produced when the blends are processed into biaxially oriented PET/PEN films, and droplets of PEN are deformed into a lamellar structure consisting of parallel and extended, separate layers. The large interfacial surface area of the bi-oriented PET/PEN blends leads to remarkably strong interfacial tension effects in dynamic rheology measurements. KW - PET/PEN blends KW - Phase separation KW - Dynamic rheology KW - Bi-oriented films KW - Time-temperature superposition KW - Surface tension PY - 2008 U6 - https://doi.org/10.1002/app.28156 SN - 0021-8995 SN - 1097-4628 VL - 110 IS - 1 SP - 177 EP - 182 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-17817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wagner, M.H. A1 - Mielke, Werner T1 - Golden Jubilee Meeting of the German Society of Rheology (DRG), Berlin, Germany PY - 2002 U6 - https://doi.org/10.1007/s00397-002-0240-4 SN - 0035-4511 SN - 1435-1528 VL - 41 IS - 4 SP - 290 EP - 291 PB - Springer CY - Berlin AN - OPUS4-1565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wagner, M. R. A1 - Schlichting, S. A1 - Müßener, J. A1 - Hille, P. A1 - Teubert, J. A1 - Schörmann, J. A1 - Rosenauer, A. A1 - Eickhoff, M. A1 - Hoffmann, A. A1 - Callsen, G. A1 - Hönig, Gerald M. O. T1 - Suppression of the quantum confined Stark effect in polar III-nitride heterostructures N2 - One of the most significant limitations for the quantum efficiency of group III-nitride based light emitters is the spatial electron-hole separation due to the quantum-confined Stark effect (QCSE). To overcome this problem, Hönig et al. [1] proposed a novel concept, the Internal-Field-Guarded-Active-Region Design (IFGARD), which suppresses the QCSE for wurtzite crystals in the [0001] direction. Here, we show how encapsulating the active region by additional guard layers results in a strong reduction of the built-in electric field in c-plane wurtzite nanostructures. Even more importantly, we demonstrate the first experimental evidence for the successful realization of an IFGARD structure based on GaN/AlN heterostructures embedded in GaN nanowires. By means of power-dependent and time-resolved µ-photoluminescence (µ-PL) we experimentally proof the validity of the unconventional IFGARD structure. We managed to tune the emission of 4-nm-thick GaN nano-discs up to 3.32 eV at low excitation powers, which is just 150 meV below the bulk GaN bandgap. Our results demonstrate an almost complete elimination of the QCSE in comparison to conventional structures which show approximately 1 eV red-shifted emission. The suppression of the QCSE results in a significant increase of the radiative exciton decay rates by orders of magnitude and demonstrates the potential of IFGARD structures for future light sources based on polar heterostructures. [1] Hönig et al., Phys. Rev. Applied 7, 024004 (2017) T2 - International Conference on Nitride Semiconductors 12 of the European Materials Research Society CY - Strasbourg, France DA - 24.07.2017 KW - Nanophotonics KW - Piezoelectricity KW - Quantum confined stark effect KW - Semiconductor nanostructures KW - Spontaneous polarization PY - 2017 AN - OPUS4-41194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wagner, G. A1 - Tiede, U. A1 - Meisel, M. A1 - Schulze, Rolf-Dieter A1 - Mackrodt, Brigitte T1 - Examination of universal microhardness of hard reaction layers resulting from reactions of organic polymers with container glass surfaces and their use for low-friction protective layers KW - Glas KW - Universalmikrohärte KW - Polymer, organisch KW - Gleitschutzschicht PY - 1995 SN - 0946-7475 VL - 68 IS - 10 SP - 318 EP - 326 PB - Verl. d. Dt. Glastechn. Ges. CY - Offenbach AN - OPUS4-592 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seefeldt, Henrik A1 - Braun, Ulrike A1 - Wagner, M.H. T1 - Residue stabilization in the fire retardancy of wood-plastic composites: combination of ammonium polyphosphate, expandable graphite, and red phosphorus N2 - Combinations of different common flame retardants in wood–plastic composites (WPCs) are tested to identify synergistic or antagonistic effects with the goal of improving the fire performance of WPCs. Flame retardants investigated are expandable graphite (EG), ammonium polyphosphate (APP), and red phosphorus (RP) and combinations of two of them are used. The fire behavior is studied by cone calorimetric measurements. Additional thermogravimetry is used for further investigations. The fire tests show that EG has the highest potential for flame retardancy, but due to its expansion it cracks the formed residue layer. Combinations of EG with RP or with high amounts of APP are able to suppress this cracking. KW - Flame retardance KW - Halogen free KW - Renewable resources KW - Wood-plastic composites KW - WPC PY - 2012 U6 - https://doi.org/10.1002/macp.201200119 SN - 1022-1352 SN - 1521-3935 VL - 213 IS - 22 SP - 2370 EP - 2377 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-27489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -