TY - JOUR A1 - Westwood, S. A1 - Martos, G. A1 - Josephs, R. A1 - Choteau, T. A1 - Wielgosz, R. A1 - Davies, S. A1 - Moawad, M. A1 - Tarrant, G. A1 - Chan, B. A1 - Alamgir, M. A1 - de Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - de Sena, R. A1 - Oliveira, R. A1 - Melanson, J. A1 - Bates, J. A1 - Mai Le, P. A1 - Meija, J. A1 - Quan, C. A1 - Huang, T. A1 - Zhang, W. A1 - Ma, R. A1 - Zhang, S. A1 - Hao, Y. A1 - He, Y. A1 - Song, S. A1 - Wang, H. A1 - Su, F. A1 - Zhang, T. A1 - Li, H. A1 - Lam, W. A1 - Wong, W. A1 - Fung, W. A1 - Philipp, Rosemarie A1 - Dorgerloh, Ute A1 - Meyer, Klas A1 - Piechotta, Christian A1 - Riedel, Juliane A1 - Westphalen, Tanja A1 - Giannikopoulou, P. A1 - Alexopoulos, Ch. A1 - Kakoulides, E. A1 - Kitamaki, Y. A1 - Yamazaki, T. A1 - Shimizu, Y. A1 - Kuroe, M. A1 - Numata, M. A1 - Pérez-Castorena, A. A1 - Balderas-Escamilla, M. A1 - Garcia-Escalante, J. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Beliakov, M. A1 - Palagina, M. A1 - Tkachenko, I. A1 - Spirin, S. A1 - Smirnov, V. A1 - Tang Lin, T. A1 - Pui Sze, C. A1 - Juan, W. A1 - Lingkai, W. A1 - Ting, L. A1 - Quinde, L. A1 - Yizhao, C. A1 - Lay Peng, S. A1 - Fernandes-Whaley, M. A1 - Prevoo-Franzsen, D. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Mkhize, D. A1 - Marajh, D. A1 - Chamane, S. A1 - Ahn, S. A1 - Choi, K. A1 - Lee, S. A1 - Han, J. A1 - Baek, S. A1 - Kim, B. A1 - Marbumrung, S. A1 - Jongmesuk, P. A1 - Shearman, K. A1 - Boonyakong, C. A1 - Bilsel, M. A1 - Gündüz, S. A1 - Ün, I. A1 - Yilmaz, H. A1 - Bilsel, G. A1 - Gökçen, T. A1 - Clarkson, C. A1 - Warren, J. A1 - Achtar, E. T1 - Mass fraction assignment of Bisphenol-A high purity material N2 - The CCQM-K148.a comparison was coordinated by the BIPM on behalf of the CCQM Organic Analysis Working Group for NMIs and DIs which provide measurement services in organic analysis under the CIPM MRA. It was undertaken as a "Track A" comparison within the OAWG strategic plan. CCQM-K148.a demonstrates capabilities for assigning the mass fraction content of a solid organic compound having moderate molecular complexity, where the compound has a molar mass in the range (75 - 500) g/mol and is non-polar (pKow < −2), when present as the primary organic component in a neat organic solid and where the mass fraction content of the primary component in the material is in excess of 950 mg/g. Participants were required to report the mass fraction of Bisphenol A present in one supplied unit of the comparison material. Participants using a mass balance method for the assignment were also required to report their assignments of the impurity components present in the material. Methods used by the seventeen participating NMIs or DIs were predominantly based on either stand-alone mass balance (summation of impurities) or qNMR approaches, or the combination of data obtained using both methods. The results obtained using thermal methods based on freezing-point depression methods were also reported by a limited number of participants. There was excellent agreement between assignments obtained using all three approaches to assign the BPA content. The assignment of the values for the mass fraction content of BPA consistent with the KCRV was achieved by most of the comparison participants with an associated relative standard uncertainty in the assigned value in the range (0.1 - 0.5)%. KW - Bisphenol-A KW - Purity assessment KW - Interlaboratory key comparison KW - Metrology PY - 2021 U6 - https://doi.org/10.1088/0026-1394/58/1A/08015 VL - 58 IS - 1A SP - 08015 PB - IOP Publishing AN - OPUS4-54188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dai, X. A1 - Zhang, W. A1 - Li, H. A1 - Huang, T. A1 - Li, M. A1 - Quan, C. A1 - Zhang, Q. A1 - Davies, S. R. A1 - Warren, J. A1 - Lo, M.-F. A1 - Kakoulides, E. A1 - Gören, A. C. A1 - Marbumrung, S. A1 - Pfeifer, Dietmar A1 - Ün, I. A1 - Gündüz, S. A1 - Yilmaz, H. A1 - Kankaew, P. A1 - Sudsiri, N. A1 - Shearman, K. A1 - Pookrod, P. A1 - Polzer, J. A1 - Radeck, W. T1 - CCQM-K104 key comparison (avermectin B(1)a) on the characterization of organic substances for chemical purity N2 - Under the Comité Consultatif pour la Quantité de Matière (CCQM), a key comparison, CCQM-K104, was coordinated by the National Institute of Metrology (NIM). The comparison was designed to demonstrate a laboratory's performance in determining the mass fraction of the main component in a complex high purity organic material. Nine NMIs or DIs participated in the comparison. Eight participants reported their results. An additional impurity was resolved from the avermectin B1a peak and was tentatively identified as an unknown impurity by NMIA (National Measurement Institute (Australia)). It was subsequently identified by NIM as a diastereoisomer of avermectin B1a at the C-26 position. Final reference value (KCRV) = 924.63 mg/g, with uncertainty (k=1) = 3.89 mg/g, and expanded uncertainty = 8.97 mg/g. The degrees of equivalence with the avermectin B1a KCRV for each participant were reported. The measurement results and degrees of equivalence should be indicative of the performance of a laboratory's measurement capability for the purity assignment of organic compounds of high structural complexity (relative molecular mass range of 500 Da -1000 Da and low polarity (-log KOW ≤ -2). KW - NMR KW - Key comparision KW - CCQM PY - 2017 U6 - https://doi.org/10.1088/0026-1394/54/1A/08019 SN - 0026-1394 VL - 54 SP - 2 EP - 32 AN - OPUS4-45381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Dai, X. A1 - Zhang, W. A1 - Li, H. A1 - Huang, T. A1 - Li, M. A1 - Quan, C. A1 - Zhang, Q. A1 - Davies, S. R A1 - Warren, J. A1 - Lo, M.-F. A1 - Kakoulides, E. A1 - Ceyhan Gören, A. A1 - Marbumrung, S. A1 - Pfeifer, Dietmar A1 - Ün, I. A1 - Gündüz, S. A1 - Yilmaz, H. A1 - Kankaew, P. A1 - Sudsiri, N. A1 - Shearman, K. A1 - Pookrod, P. A1 - Polzer, J. A1 - Radeck, W. T1 - CCQM-K104 Key Comparison on the characterization of organic substances for chemical purity - Avermectin B1a N2 - Anwendungen von qNMR KW - qNMR PY - 2017 SP - 1 EP - 32 AN - OPUS4-45035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, J. A1 - Gong, M. A1 - Zhang, W. A1 - Mehmood, Asad A1 - Zhang, J. A1 - Ali, G. A1 - Kucernak, A. T1 - Simultaneously incorporating atomically dispersed Co-Nₓ sites with graphitic carbon layer-wrapped Co₉S₈ nanoparticles for oxygen reduction in acidic electrolyte N2 - A facile yet robust synthesis is reported herein to simultaneously incorporate atomically dispersed Co-Nₓ sites with graphitic layer-protected Co₉S₈ nanoparticles (denoted as Co SACs+Co₉S₈) as an efficient electrocatalyst for oxygen reduction in acidic solution. The Co SACs+Co₉S₈ catalyst shows low H₂O₂ selectivity (∼5 %) with high half-wave potential (E1/2) of ∼0.78 V(RHE) in 0.5 M H₂SO₄. The atomic sites of the catalyst were quantified by a nitrite stripping method and the corresponding site density of the catalyst is calculated to be 3.2×10¹⁸ sites g⁻¹. Besides, we also found the presence of a reasonable amount of Co₉S₈ nanoparticles is beneficial for the oxygen electrocatalysis. Finally, the catalyst was assembled into a membrane electrode assembly (MEA) for evaluating its performance under more practical conditions in proton exchange membrane fuel cell (PEMFC) system. KW - Co−N-Cs KW - Fuel cells KW - Single-atom catalysts KW - Oxygen reduction reaction KW - PGM-free catalysts PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-575993 SN - 2196-0216 VL - 10 IS - 12 SP - 1 EP - 9 PB - Wiley-VCH CY - Weinheim AN - OPUS4-57599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jablonka, Kevin Maik A1 - Ai, Qianxiang A1 - Al-Feghali, Alexander A1 - Badhwar, Shruti A1 - Bocarsly, Joshua D. A1 - Bran, Andres M. A1 - Bringuier, Stefan A1 - Brinson, L. Catherine A1 - Choudhary, Kamal A1 - Circi, Defne A1 - Cox, Sam A1 - de Jong, Wibe A. A1 - Evans, Matthew L. A1 - Gastellu, Nicolas A1 - Genzling, Jerome A1 - Gil, María Victoria A1 - Gupta, Ankur K. A1 - Hong, Zhi A1 - Imran, Alishba A1 - Kruschwitz, Sabine A1 - Labarre, Anne A1 - Lála, Jakub A1 - Liu, Tao A1 - Ma, Steven A1 - Majumdar, Sauradeep A1 - Merz, Garrett W. A1 - Moitessier, Nicolas A1 - Moubarak, Elias A1 - Mouriño, Beatriz A1 - Pelkie, Brenden A1 - Pieler, Michael A1 - Ramos, Mayk Caldas A1 - Ranković, Bojana A1 - Rodriques, Samuel G. A1 - Sanders, Jacob N. A1 - Schwaller, Philippe A1 - Schwarting, Marcus A1 - Shi, Jiale A1 - Smit, Berend A1 - Smith, Ben E. A1 - Van Herck, Joren A1 - Völker, Christoph A1 - Ward, Logan A1 - Warren, Sean A1 - Weiser, Benjamin A1 - Zhang, Sylvester A1 - Zhang, Xiaoqi A1 - Zia, Ghezal Ahmad A1 - Scourtas, Aristana A1 - Schmidt, K. J. A1 - Foster, Ian A1 - White, Andrew D. A1 - Blaiszik, Ben T1 - 14 examples of how LLMs can transform materials science and chemistry: a reflection on a large language model hackathon N2 - Large-language models (LLMs) such as GPT-4 caught the interest of many scientists. Recent studies suggested that these models could be useful in chemistry and materials science. To explore these possibilities, we organized a hackathon. This article chronicles the projects built as part of this hackathon. Participants employed LLMs for various applications, including predicting properties of molecules and materials, designing novel interfaces for tools, extracting knowledge from unstructured data, and developing new educational applications. The diverse topics and the fact that working prototypes could be generated in less than two days highlight that LLMs will profoundly impact the future of our fields. The rich collection of ideas and projects also indicates that the applications of LLMs are not limited to materials science and chemistry but offer potential benefits to a wide range of scientific disciplines. KW - Large Language model KW - Hackathon KW - Concrete KW - Prediction KW - Inverse Design KW - Orchestration PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-589961 VL - 2 IS - 5 SP - 1233 EP - 1250 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Josephs, R. A1 - Choteau, T. A1 - Daireaux, A. A1 - Stoppacher, N. A1 - Wielgosz, R. A1 - Davies, S. A1 - do Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - Lima, J. A1 - Oliveira, R. A1 - de Sena, R. A1 - Windust, A. A1 - Huang, T. A1 - Dai, X. A1 - Quan, C. A1 - He, H. A1 - Zhang, W. A1 - Wei, C. A1 - Li, N. A1 - Gao, D. A1 - Liu, Z. A1 - Lo, M. A1 - Wong, W. A1 - Pfeifer, Dietmar A1 - Koch, Matthias A1 - Dorgerloh, Ute A1 - Rothe, Robert A1 - Philipp, Rosemarie A1 - Hanari, N. A1 - Rezali, M. A1 - Arzate, C. A1 - Berenice, M. A1 - Caballero, V. A1 - Osuna, M. A1 - Krylov, A. A1 - Kharitonov, S. A1 - Lopushanskaya, E. A1 - Liu, Q. A1 - Lin, T. A1 - Fernandes-Whaley, M. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Prevoo-Franzsen, D. A1 - Archer, M. A1 - Kim, B. A1 - Baek, S. A1 - Lee, S. A1 - Lee, J. A1 - Marbumrung, S. A1 - Kankaew, P. A1 - Chaorenpornpukdee, K. A1 - Chaipet, T. A1 - Shearman, K. A1 - Gören, A. A1 - Gündüz, S. A1 - Yilmaz, H. A1 - Un, I. A1 - Bilsel, G. A1 - Clarkson, C. A1 - Bedner, M. A1 - Camara, J. A1 - Lang, B. A1 - Lippa, K. A1 - Nelson, M. A1 - Toman, B. A1 - Yu, L. T1 - Mass fraction assignment of folic acid in a high purity material - CCQM-K55.d (Folic acid) Final Report N2 - The comparison required the assignment of the mass fraction of folic acid present as the main component in the comparison sample. Performance in the comparison is representative of a laboratory's measurement capability for the purity assignment of organic compounds of medium structural complexity [molecular weight range 300–500] and high polarity (pKOW < −2). Methods used by the eighteen participating NMIs or DIs were based on a mass balance (summation of impurities) or qNMR approach, or the combination of data obtained using both methods. The qNMR results tended to give slightly lower values for the content of folic acid, albeit with larger associated uncertainties, compared with the results obtained by mass balance procedures. Possible reasons for this divergence are discussed in the report, without reaching a definitive conclusion as to their origin. The comparison demonstrates that for a structurally complex polar organic compound containing a high water content and presenting a number of additional analytical challenges, the assignment of the mass fraction content property value of the main component can reasonably be achieved with an associated relative standard uncertainty in the assigned value of 0.5% KW - CCQM key comparison KW - Purity assessment KW - Folic acid PY - 2018 UR - https://www.bipm.org/utils/common/pdf/final_reports/QM/K55/CCQM-K55.d.pdf U6 - https://doi.org/10.1088/0026-1394/55/1A/08013 VL - 55 IS - Technical Supplement, 2018 SP - 08013, 1 EP - 38 PB - Institute of Physics Publishing (IOP) ; Bureau International des Poids et Mesures AN - OPUS4-44999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Josephs, R. A1 - Choteau, T. A1 - Daireaux, A. A1 - Wielgosz, R. A1 - Davies, S. A1 - Moad, M. A1 - Chan, B. A1 - Munoz, A. A1 - Conneely, P. A1 - Ricci, M. A1 - Do Rego, E.C.P. A1 - Garrido, B.C. A1 - Violante, F.G.M. A1 - Windust, A. A1 - Dai, X. A1 - Huang, T. A1 - Zhang, W. A1 - Su, F. A1 - Quan, C. A1 - Wang, H. A1 - Lo, M. A1 - Wong, W. A1 - Gantois, F. A1 - Lalerle, B. A1 - Dorgerloh, Ute A1 - Koch, Matthias A1 - Klyk-Seitz, Urszula-Anna A1 - Pfeifer, Dietmar A1 - Philipp, Rosemarie A1 - Piechotta, Christian A1 - Recknagel, Sebastian A1 - Rothe, Robert A1 - Yamazaki, T. A1 - Zakaria, O. B. A1 - Castro, E. A1 - Balderas, M. A1 - González, N. A1 - Salazar, C. A1 - Regalado, L. A1 - Valle, E. A1 - Rodríguez, L. A1 - Laguna, L.Á.. A1 - Ramírez, P. A1 - Avila, M. A1 - Ibarra, J. A1 - Valle, L. A1 - Arce, M. A1 - Mitani, Y. A1 - Konopelko, L. A1 - Krylov, A. A1 - Lopushanskaya, E. A1 - Lin, T.T. A1 - Liu, Q. A1 - Kooi, L.T. A1 - Fernandes-Whaley, M. A1 - Prevoo-Franzsen, D. A1 - Nhlapo, N. A1 - Visser, R. A1 - Kim, B. A1 - Lee, H. A1 - Kankaew, P. A1 - Pookrod, P. A1 - Sudsiri, N. A1 - Shearman, K. A1 - Gören, A.C. A1 - Bilsel, G. A1 - Yilmaz, H. A1 - Bilsel, M. A1 - Cergel, M. A1 - Coskun, F.G. A1 - Uysal, E. A1 - Gündüz, S. A1 - Ün, I. A1 - Warren, J. A1 - Bearden, D.W. A1 - Bedner, M. A1 - Duewer, D.L. A1 - Lang, B.E. A1 - Lippa, K.A. A1 - Schantz, M.M. A1 - Sieber, J.R. T1 - Final report on key comparison CCQM-K55.c (L-(+)-Valine): Characterization of organic substances for chemical purity N2 - KEY COMPARISON Under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM K55.c, was coordinated by the Bureau International des Poids et Mesures (BIPM) in 2012. Twenty National Measurement Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of valine present as the main component in the comparison sample for CCQM-K55.c. The comparison samples were prepared from analytical grade L-valine purchased from a commercial supplier and used as provided without further treatment or purification. Valine was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of organic compounds of low structural complexity [molecular weight range 100–300] and high polarity (pKOW > –2). The KCRV for the valine content of the material was 992.0 mg/g with a combined standard uncertainty of 0.3 mg/g. The key comparison reference value (KCRV) was assigned by combination of KCRVs assigned from participant results for each orthogonal impurity class. The relative expanded uncertainties reported by laboratories having results consistent with the KCRV ranged from 1 mg/g to 6 mg/g when using mass balance based approaches alone, 2 mg/g to 7 mg/g using quantitative 1H NMR (qNMR) based approaches and from 1 mg/g to 2.5 mg/g when a result obtained by a mass balance method was combined with a separate qNMR result. The material provided several analytical challenges. In addition to the need to identify and quantify various related amino acid impurities including leucine, isoleucine, alanine and a-amino butyrate, care was required to select appropriate conditions for performing Karl Fischer titration assay for water content to avoid bias due to in situ formation of water by self-condensation under the assay conditions. It also proved to be a challenging compound for purity assignment by qNMR techniques. There was overall excellent agreement between participants in the identification and the quantification of the total and individual related structure impurities, water content, residual solvent and total non-volatile content of the sample. Appropriate technical justifications were developed to rationalise observed discrepancies in the limited cases where methodology differences led to inconsistent results. The comparison demonstrated that to perform a qNMR purity assignment the selection of appropriate parameters and an understanding of their potential influence on the assigned value is critical for reliable implementation of the method, particularly when one or more of the peaks to be quantified consist of complex multiplet signals. PY - 2014 U6 - https://doi.org/10.1088/0026-1394/51/1A/08010 SN - 0026-1394 SN - 1681-7575 VL - 51 SP - 08010, 1 EP - 44 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-31072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, K.J. A1 - Unger, Wolfgang A1 - Kim, J.W. A1 - Moon, D.W. A1 - Gross, Thomas A1 - Hodoroaba, Vasile-Dan A1 - Schmidt, Dieter A1 - Wirth, Thomas A1 - Jordaan, W. A1 - van Staden, M. A1 - Prins, S. A1 - Zhang, L. A1 - Fujimoto, T. A1 - Song, X.P. A1 - Wang, H. T1 - Inter-laboratory comparison: quantitative surface analysis of thin Fe-Ni alloy films N2 - An international interlaboratory comparison of the measurement capabilities of four National Metrology Institutes (NMIs) and one Designated Institute (DI) in the determination of the chemical composition of thin Fe-Ni alloy films was conducted via a key comparison (K-67) of the Surface Analysis Working Group of the Consultative Committee for Amount of Substance. This comparison was made using XPS (four laboratories) and AES (one laboratory) measurements. The uncertainty budget of the measured chemical composition of a thin alloy film was dominated by the uncertainty of the certified composition of a reference specimen which had been determined by inductively coupled plasma mass spectrometry using the isotope dilution method. Pilot study P-98 showed that the quantification using relative sensitivity factors (RSFs) of Fe and Ni derived from an alloy reference sample results in much more accurate result in comparison to an approach using RSFs derived from pure Fe and Ni films. The individual expanded uncertainties of the participants in the K-67 comparison were found to be between 2.88 and 3.40 atomic %. The uncertainty of the key comparison reference value (KCRV) calculated from individual standard deviations and a coverage factor (k) of 2 was 1.23 atomic %. KW - Quantification KW - Fe-Ni alloy KW - Uncertainty KW - Key comparison KW - Traceability PY - 2012 U6 - https://doi.org/10.1002/sia.3795 SN - 0142-2421 SN - 1096-9918 VL - 44 IS - 2 SP - 192 EP - 199 PB - Wiley CY - Chichester AN - OPUS4-24505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, K.J. A1 - Kim, J.W. A1 - Moon, D.W. A1 - Wirth, Thomas A1 - Hodoroaba, Vasile-Dan A1 - Gross, Thomas A1 - Unger, Wolfgang A1 - Jordaan, W. A1 - Staden, M.v. A1 - Prins, S. A1 - Wang, H. A1 - Song, X. A1 - Zhang, L. A1 - Fujimoto, T. A1 - Kojima, I. T1 - Final report on key comparison K67 and parallel pilot study P108: measurement of composition of a thin Fe-Ni alloy film N2 - The Key Comparison K67 and the parallel Pilot Study P108 on quantitative analysis of thin alloy films have been completed in the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The aim of these inter-laboratory comparisons is to determine the degree of equivalence in the measurement capability of national metrology institutes (NMIs) and designated institutes (DIs) for the determination of the composition of thin alloy films. The measurand is expressed in atomic percent. A Fe-Ni alloy film with a certified composition was available for the participants of the inter-laboratory comparison. It has been used as a reference specimen to determine the relative sensitivity factors (RSF) of Fe and Ni for the different analytical methods used by the participants to determine the composition of the test sample. As was shown in the preceding Pilot Study P98, the degrees of equivalence in the measurement capabilities of the participants can be improved in that way. The composition of the reference specimen was certified by inductively coupled plasma mass spectrometry (ICP-MS) using the isotope dilution method. The in-depth and lateral homogeneity, determined in terms of elemental composition, of the certified reference sample and the unknown test sample were confirmed by secondary ion mass spectrometry (SIMS) using C60 primary ions by the leading laboratory. Five laboratories participated in the key comparison. Four of them used x-ray photoelectron spectroscopy (XPS) and one Auger electron spectroscopy (AES). One laboratory participated in the parallel P108 pilot study using electron probe micro analysis with an energy-dispersive spectrometer (ED EPMA) and XPS. KW - XPS KW - AES KW - EDX KW - Fe-Ni alloy film KW - Key comparison KW - CCQM PY - 2010 U6 - https://doi.org/10.1088/0026-1394/47/1A/08011 SN - 0026-1394 SN - 1681-7575 VL - 47 IS - 1A SP - 08011-1 - 08011-15 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-21045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, F. A1 - Ngai, S. A1 - Zhou, X. Y. A1 - Zaiser, E. A1 - Manzoni, Anna Maria A1 - Wu, Y. A1 - Zheng, W. W. A1 - Zhang, P. A1 - Thompson, G. B. T1 - Tracking maze-like hierarchical phase separation behavior in a Fe-Si-V alloy N2 - Optimizing the properties of next-generation high-temperature and corrosion-resistant alloys is rooted in balancing structure-property relationships and phase chemistry. Here, we implement a complementary approach based on transmission electron microscopy (TEM) and atom probe tomography (APT) to ascertain aspects of hierarchical phase separation behavior, by understanding the microstructural evolution and the three-dimensional (3D) nanochemistry of a single crystal Fe79.5Si15.5V5.0 (at%) alloy. A maze-like hierarchical microstructure forms, in which a complex network of metastable disordered α plates (A2 phase) emerges within ordered α1 precipitates (D03 phase). The supersaturation in α1 (D03) precipitates with Fe and V drives the formation of α (A2) plates. The morphology of α (A2) plates is discussed concerning crystal structure, lattice misfit, and elastic strain. Phase compositions and a ternary phase diagram aid the thermodynamic assessment of the hierarchical phase separation mechanism via the Gibbs energy of mixing. A perspective on the stabilization of hierarchical microstructures beyond Fe79.5Si15.5V5.0 is elaborated by comparing hierarchical alloys. We find that the ratio of elastic anisotropy (Zener ratio) serves as a predictor of the hierarchical particles’ morphology. We suggest that the strengthening effect of hierarchical microstructures can be harnessed by improving the temporal and thermal stability of hierarchical particles. This can be achieved through phase-targeted alloying aiming at the hierarchical particles phase by considering the constituents partitioning behavior. Beyond Fe79.5Si15.5V5.0, our results demonstrate a potential pathway for improving the properties of high-temperature structural materials. KW - Atom probe tomography KW - Transmission electron microscopy KW - Hierarchical microstructure KW - Phase separation PY - 2023 U6 - https://doi.org/10.1016/j.jallcom.2023.172157 SN - 0925-8388 VL - 968 SP - 1 EP - 17 PB - Elsevier B.V. AN - OPUS4-58343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, K.J. A1 - Kim, C.S. A1 - Ruh, S. W. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Mata-Salazar, J. A1 - Juarez-Garcia, J.M. A1 - Cortazar-Martinez, O. A1 - Herrera-Gomez, A. A1 - Hansen, P.E. A1 - Madesen, J.S. A1 - Senna, C.A. A1 - Archanjo, B.S. A1 - Damasceno, J.C. A1 - Achete, C.A. A1 - Wang, H. A1 - Wang, M. A1 - Windover, D. A1 - Steel, E. A1 - Kurokawa, A. A1 - Fujimoto, T. A1 - Azuma, Y. A1 - Terauchi, S. A1 - Zhang, L. A1 - Jordaan, W.A. A1 - Spencer, S.J. A1 - Shard, A.G. A1 - Koenders, L. A1 - Krumrey, M. A1 - Busch, I. A1 - Jeynes, C. T1 - Thickness measurement of nm HfO2 films N2 - A pilot study for the thickness measurement of HfO2 films was performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The aim of this pilot study was to ensure the equivalency in the measurement capability of national metrology institutes for the thickness measurement of HfO2 films. In this pilot study, the thicknesses of six HfO2 films with nominal thickness from 1 nm to 4 nm were measured by X-ray Photoelectron Spectroscopy (XPS), X-ray Reflectometry(XRR), X-ray Fluorescence Analysis (XRF), Transmission Electron Spectroscopy (TEM), Spectroscopic Ellipsometry (SE) and Rutherford Backscattering Spectrometry (RBS). The reference thicknesses were determined by mutual calibration of a zero-offset method (Medium Energy Ion Scattering Spectroscopy (MEIS) of KRISS) and a method traceable to the length unit (the average thicknesses of three XRR data except the thinnest film). These reference thicknesses are traceable to the length unit because they are based on the traceability of XRR. For the thickness measurement by XPS, the effective attenuation length of Hf 4f electrons was determined. In the cases of XRR and TEM, the offset values were determined from a linear fitting between the reference thicknesses and the individual data by XRR and TEM. The amount of substance of HfO2, expressed as thickness of HfO2 films (in both linear and areal density units), was found to be a good subject for a CCQM key comparison. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM. KW - Thickness measurements KW - nm films KW - X-ray Photoelectron Spectroscopy KW - Mutual calibration PY - 2021 U6 - https://doi.org/10.1088/0026-1394/58/1A/08016 SN - 0026-1394 VL - 58 IS - 1a SP - 08016 PB - IOP Publishing Lt. CY - Bristol AN - OPUS4-54175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bosch, R.-W. A1 - Cottis, R.A. A1 - Csecs, K. A1 - Dorsch, T. A1 - Dunbar, L. A1 - Heyn, Andreas A1 - Huet, F. A1 - Hyökyvirta, O. A1 - Kerner, Z. A1 - Kobzova, A. A1 - Macak, J. A1 - Novotny, R. A1 - Öijerholm, J. A1 - Piippo, J. A1 - Richner, R. A1 - Ritter, S. A1 - Sánchez-Amaya, J.M. A1 - Somogyi, A. A1 - Väisänen, S. A1 - Zhang, W. T1 - Reliability of electrochemical noise measurements: Results of round-robin testing on electrochemical noise N2 - Sixteen laboratories have performed electrochemical noise (EN) measurements based on two systems. The first uses a series of dummy cells consisting of a 'star' arrangement of resistors in order to validate the EN measurement equipment and determine its baseline noise performance, while the second system, based on a previous round-robin in the literature, examines the corrosion of aluminium in three environments. All participants used the same measurement protocol and the data reporting and analysis were performed with automatic procedures to avoid errors. The measurement instruments used in the various laboratories include commercial general-purpose potentiostats and custom-built EN systems. The measurements on dummy cells have demonstrated that few systems are capable of achieving instrument noise levels comparable to the thermal noise of the resistors, because of its low level. However, it is of greater concern that some of the instruments exhibited significant artefacts in the measured data, mostly because of the absence of anti-aliasing filters in the equipment or because the way it is used. The measurements on the aluminium samples involve a much higher source noise level during pitting corrosion, and most (though not all) instruments were able to make reliable measurements. However, during passivation, the low level of noise could be measured by very few systems. The round-robin testing has clearly shown that improvements are necessary in the choice of EN measurement equipment and settings and in the way to validate EN data measured. The results emphasise the need to validate measurement systems by using dummy cells and the need to check systematically that the noise of the electrochemical cell to be measured is significantly higher than the instrument noise measured with dummy cells of similar impedance. KW - Electrochemical noise KW - Round-robin KW - Corrosion PY - 2014 U6 - https://doi.org/10.1016/j.electacta.2013.12.093 SN - 0013-4686 SN - 1873-3859 VL - 120 SP - 379 EP - 389 PB - Elsevier Science CY - Kidlington AN - OPUS4-30284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gluth, Gregor A1 - Zhang, W. A1 - Gaggl, M. A1 - Hillemeier, B. A1 - Behrendt, F. T1 - Multicomponent gas diffusion in hardened cement paste at temperatures up to 350 °C N2 - Diffusional gas transport of a H2/CO2 mixture versus N2 in the pore system of hardened cement pastes was studied at four temperatures up to 350 °C in a Wicke-Kallenbach cell. The pastes possessed separation factors αH2,CO2 from 1.42 to 3.43, i.e. the diffusion of hydrogen took place considerably faster than the diffusion of carbon dioxide. The separation factors depended on the threshold radii of the pastes, smaller threshold radii leading to higher separation factors. The Knudsen numbers of the controlling constrictions of the pore system and the temperature dependence of the effective diffusion coefficients of the gases show that gas transport in these constrictions takes place in the transient regime between Knudsen diffusion and bulk diffusion, smaller constriction widths leading to predominating Knudsen diffusion. It is therefore possible to use cement paste membranes to separate gas components of low molecular weight from higher weight components. KW - Microstructure (B) KW - Mercury porosimetry (B) KW - Diffusion (C) KW - Cement paste (D) KW - Gas separation KW - Pore structure PY - 2012 U6 - https://doi.org/10.1016/j.cemconres.2012.02.001 SN - 0008-8846 SN - 1873-3948 VL - 42 IS - 5 SP - 656 EP - 664 PB - Pergamon Press CY - New York, NY AN - OPUS4-25655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wagner, M.H. A1 - Wu, W. A1 - Liu, Y. A1 - Qian, Q. A1 - Zhang, Y. A1 - Mielke, Werner T1 - Study on Phase Separation of PET/PEN Blends by Dynamic Rheology N2 - Blends of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalate) (PEN) were processed into biaxially drawn films, and samples taken from the bi-oriented films were then investigated by dynamic rheology experiments in the melt state. Storage modulus G and loss modulus G were determined in the frequency range of 10-2-102 rad/s at temperatures between 260 and 300°C. Although the time-temperature superposition (TTS) principle was found to hold in the high frequency regime, a breakdown of TTS was observed at low frequencies, and the terminal behavior of the storage modulus G of the blends departs drastically from the terminal behavior observed for the blend components. This is caused by interfacial surface tension effects. The results indicate that despite the effect of transesterification reactions, the PET/PEN blend systems investigated consist of a microseparate phase of PEN platelets in a matrix of PET. This morphology is produced when the blends are processed into biaxially oriented PET/PEN films, and droplets of PEN are deformed into a lamellar structure consisting of parallel and extended, separate layers. The large interfacial surface area of the bi-oriented PET/PEN blends leads to remarkably strong interfacial tension effects in dynamic rheology measurements. KW - PET/PEN blends KW - Phase separation KW - Dynamic rheology KW - Bi-oriented films KW - Time-temperature superposition KW - Surface tension PY - 2008 U6 - https://doi.org/10.1002/app.28156 SN - 0021-8995 SN - 1097-4628 VL - 110 IS - 1 SP - 177 EP - 182 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-17817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Babu, S. S. A1 - Sonnenberg, G. A1 - Schwenk, Christopher A1 - Goldak, J. A1 - Porzner, H. A1 - Khurana, S.P. A1 - Zhang, W. A1 - Gayler, J. T1 - How can computational weld mechanics help industry? KW - Schweißen KW - Simulation KW - Temperatur KW - Verzug KW - Eigenspannungen PY - 2010 SN - 0043-2296 SN - 0096-7629 VL - 89 IS - 1 SP - 40 EP - 45 PB - American Welding Society CY - New York, NY AN - OPUS4-20793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Josephs, R. A1 - Choteau, T. A1 - Daireaux, A. A1 - Mesquida, C. A1 - Wielgosz, R. A1 - Rosso, A. A1 - de Arechavaleta, M.R. A1 - Davies, S. A1 - Wang, H. A1 - do Rego, E.C.P. A1 - Rodrigues, J.M. A1 - de Freitas Guimaraes, E. A1 - Sousa, M.V.B. A1 - Monteiro, T.M. A1 - das Neves Valente, L.A. A1 - Violante, F.G.M. A1 - Almeida, R. R. R. A1 - Quaresma, M.C.B. A1 - Nogueira, R. A1 - Windust, A. A1 - Dai, X. A1 - Li, X. A1 - Zhang, W. A1 - Li, M. A1 - Shao, M. A1 - Wei, C. A1 - Wong, S.-K. A1 - Cabillic, J. A1 - Gantois, F. A1 - Philipp, Rosemarie A1 - Pfeifer, Dietmar A1 - Hein, Sebastian A1 - Klyk-Seitz, Urszula-Anna A1 - Ishikawa, K. A1 - Castro, E. A1 - Gonzalez, N. A1 - Krylov, A. A1 - Lin, T.T. A1 - Kooi, L.T. A1 - Fernandes-Whaley, M. A1 - Prévoo, D. A1 - Archer, M. A1 - Visser, R. A1 - Nlhapo, N. A1 - de Vos, B. A1 - Ahn, S. A1 - Pookrod, P. A1 - Wiangnon, K. A1 - Sudsiri, N. A1 - Muaksang, K. A1 - Cherdchu, C. A1 - Gören, A.C. A1 - Bilsel, M. A1 - LeGoff, T. A1 - Bearden, D. A1 - Bedner, M. A1 - Duewer, D. A1 - Hancock, D. A1 - Lang, B. A1 - Lippa, K. A1 - Schantz, M. A1 - Sieber, j. T1 - Final report on key comparison CCQM-K55.b (aldrin): An international comparison of mass friction purity assignment of aldrin N2 - Under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM K55.b, was coordinated by the Bureau International des Poids et Mesures (BIPM) in 2010/2011. Nineteen national measurement institutes and the BIPM participated. Participants were required to assign the mass fraction of aldrin present as the main component in the comparison sample for CCQM-K55.b which consisted of technical grade aldrin obtained from the National Measurement Institute Australia that had been subject to serial recrystallization and drying prior to sub-division into the units supplied for the comparison. Aldrin was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of organic compounds of medium structural complexity [molar mass range 300 Da to 500 Da] and low polarity (pKOW < -2) for which related structure impurities can be quantified by capillary gas phase chromatography (GC). The key comparison reference value (KCRV) for the aldrin content of the material was 950.8 mg/g with a combined standard uncertainty of 0.85 mg/g. The KCRV was assigned by combination of KCRVs assigned by consensus from participant results for each orthogonal impurity class. The relative expanded uncertainties reported by laboratories having results consistent with the KCRV ranged from 0.3% to 0.6% using a mass balance approach and 0.5% to 1% using a qNMR method. The major analytical challenge posed by the material proved to be the detection and quantification of a significant amount of oligomeric organic material within the sample and most participants relying on a mass balance approach displayed a positive bias relative to the KCRV (overestimation of aldrin content) in excess of 10 mg/g due to not having adequate procedures in place to detect and quantify the non-volatile content–specifically the non-volatile organics content–of the comparison sample. There was in general excellent agreement between participants in the identification and the quantification of the total and individual related structure impurities, water content and the residual solvent content of the sample. The comparison demonstrated the utility of 1H NMR as an independent method for quantitative analysis of high purity compounds. In discussion of the participant results it was noted that while several had access to qNMR estimates for the aldrin content that were inconsistent with their mass balance determination they decided to accept the mass balance result and assumed a hidden bias in their NMR data. By contrast, laboratories that placed greater confidence in their qNMR result were able to resolve the discrepancy through additional studies that provided evidence of the presence of non-volatile organic impurity at the requisite level to bring their mass balance and qNMR estimates into agreement. PY - 2012 U6 - https://doi.org/10.1088/0026-1394/49/1A/08014 SN - 0026-1394 SN - 1681-7575 VL - 49 IS - CCQM-K55.b Final Report October 2012 SP - 1 EP - 41 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-26831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, W. A1 - Gaggl, M. A1 - Gluth, Gregor A1 - Behrendt, F. T1 - Gas separation using porous cement membrane N2 - Gas separation is a key issue in various industrial fields. Hydrogen has the potential for application in clean fuel technologies. Therefore, the separation and purification of hydrogen is an important research subject. CO2 capture and storage have important roles in 'green chemistry'. As an effective clean technology, gas separation using inorganic membranes has attracted much attention in the last several decades. Membrane processes have many applications in the field of gas separation. Cement is one type of inorganic material, with the advantages of a lower cost and a longer lifespan. An experimental setup has been created and improved to measure twenty different cement membranes. The purpose of this work was to investigate the influence of gas molecule properties on the material transport and to explore the influence of operating conditions and membrane composition on separation efficiency. The influences of the above parameters are determined, the best conditions and membrane type are found, it is shown that cementitious material has the ability to separate gas mixtures, and the gas transport mechanism is studied. KW - Gas separation KW - Porous membrane KW - Clean fuel KW - Cement membrane KW - Inorganic membranes PY - 2014 U6 - https://doi.org/10.1016/S1001-0742(13)60389-7 SN - 1001-0742 SN - 1878-7320 VL - 26 IS - 1 SP - 140 EP - 146 CY - Beijing, China AN - OPUS4-30039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhou, F. A1 - Ma, C. A1 - Zhang, K. A1 - Chan, Yin Yam A1 - Xiao, Y. A1 - Schartel, Bernhard A1 - Döring, M. A1 - Wang, B. A1 - Hu, W. A1 - Hu, Y. T1 - Synthesis of Ethyl (Diethoxymethyl)phosphinate Derivatives and Their Flame Retardancy in Flexible Polyurethane Foam: Structure-flame Retardancy Relationships N2 - Three novel liquid ethyl (diethoxymethyl)phosphinate derivatives (EDPs) were synthesized and incorporated into flexible polyurethane foams (FPUFs). The flame retardancy of FPUFs were evaluated by limiting oxygen index (LOI), vertical burning and cone calorimetry tests, and the results indicated the structure-flame retardancy relationship of EDPs. Among these EDPs, P-(diethoxymethyl)-N-phenylphosphonamidate (EDPPA) exhibited the best flame retardant effect, methyl 3-((diethoxymethyl)(ethoxy)phosphoryl)propanoate (EDPMA) the second, and ethyl phenyl (di-ethoxymethyl)phosphonate (EDPPO) the worst. When the incorporation of EDPPA was 10 wt%, the FPUFs could self-extinguish and pass the vertical burning test. Meanwhile, the LOI value of FPUF-PA increased to 23.6% with 20 wt% loading of flame retardant. According to the investigation of volatiles during the thermal degradation of FPUFs and the morphologies of char residues after cone test, we inferred the pos- sible flame retardant mechanism. The results indicated that EDPs could release phosphorus-containing compounds in the gas phase, which would generate phosphorus-containing radicals and play the role of radical scavenger. In the condensed phase, EDPs can promote the formation of dense, intact and thermal stably char layer on the surface of FPUFs. Moreover, we found that the structure influence on flame retardancy was attributed to the atoms linked to the central phosphorus. Our results indicate that these EDPs are promising flame retardants in FPUFs that can be applied to improve the flame retardancy of FPUFs in various practical applications. KW - Ethyl (diethoxymethyl)phosphinate derivatives KW - Flame retardant KW - Flexible polyurethane foam KW - Structure-flame retardancy relationship PY - 2021 U6 - https://doi.org/10.1016/j.polymdegradstab.2021.109557 SN - 0141-3910 VL - 188 SP - 109557 PB - Elsevier Ltd. AN - OPUS4-53085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schutjajew, K. A1 - Pampel, Jonas A1 - Zhang, W. A1 - Antonietti, M. A1 - Oschatz, M. T1 - Influence of pore architecture and chemical structure on the sodium storage in nitrogen‐doped hard carbons N2 - Hard carbon is the material of choice for sodium ion battery anodes. Capacities comparable to those of lithium/graphite can be reached, but the understanding of the underlying sodium storage mechanisms remains fragmentary. A two‐step process is commonly observed, where sodium first adsorbs to polar sites of the carbon (“sloping region”) and subsequently fills small voids in the material (“plateau region”). To study the impact of nitrogen functionalities and pore geometry on sodium storage, a systematic series of nitrogen‐doped hard carbons is synthesized. The nitrogen content is found to contribute to sloping capacity by binding sodium ions at edges and defects, whereas higher plateau capacities are found for materials with less nitrogen content and more extensive graphene layers, suggesting the formation of 2D sodium structures stabilized by graphene‐like pore walls. In fact, up to 84% of the plateau capacity is measured at potentials less than 0 V versus metallic Na, that is, quasimetallic sodium can be stabilized in such structure motifs. Finally, gas physisorption measurements are related to charge discharge data to identify the energy storage relevant pore architectures. Interestingly, these are pores inaccessible to probe gases and electrolytes, suggesting a new view on such “closed pores” required for efficient sodium storage. KW - Sodium Ion Batteries KW - Hard Carbon KW - Storage Mechanism KW - Anode PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-522529 VL - 17 IS - 48 SP - 2006767 PB - Wiley Online Library AN - OPUS4-52252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Liu, Y. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Long, W. A1 - Ou, J. T1 - NaYF4:Yb3+/Tm3+@NaYF4:Yb3+ Upconversion Nanoparticles for Optical Temperature Monitoring and Self-Heating in Photothermal Therapy N2 - The core−shell NaYF4:Yb3+/Tm3+@NaYF4:Yb3+ upconversion nanoparticles were successfully prepared by a solvothermal method, and a layer of mesoporous silica (mSiO2) was successfully coated on the periphery of the core−shell nanoparticles to transform their surface from lipophilic to hydrophilic, further expanding their applications in biological tissues. The physical phase, morphology, structure, and fluorescence properties were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (TEM), Fourier infrared spectroscopy (FT-IR), ζ potential analysis, and fluorescence spectroscopy. It was found that the material has a hexagonal structure with good hydrophilicity and emits intense fluorescence under 980 nm pump laser excitation. The non-contact temperature sensing performance of nanoparticles was evaluated by analyzing the upconversion fluorescence of Tm3+ (1G4 → 3F4 and 3F3 → 3H6) in the temperature range of 284−344 K. The absolute and relative sensitivities were found to be 0.0067 K−1 and 1.08 % K−1, respectively, with high-temperature measurement reliability and good temperature cycling performance. More importantly, its temperature measurement in phosphate-buffered saline (PBS) solution is accurate. In addition, the temperature of the cells can be increased by adjusting the laser power density and laser irradiation time. Therefore, an optical temperature sensing platform was built to realize the application of real-time monitoring of cancer cell temperature and the dual function of photothermal therapy. KW - Sensor KW - Temperature KW - Lanthanide KW - Tag KW - Fluorescence KW - Nanoparticles KW - Synthesis KW - Environment KW - Monitoring KW - Sensing KW - Nano KW - Life sciences KW - Upconversion PY - 2023 U6 - https://doi.org/10.1021/acsanm.2c05110 VL - 6 IS - 1 SP - 759 EP - 771 PB - ACS Publications AN - OPUS4-57081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Li, Z. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Long, W. A1 - Ou, Jun T1 - Preparation of NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles and application of their fluorescence temperature sensing properties N2 - The NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles were successfully prepared by the solvothermal method, and the samples were pure hexagonal phase with good crystallinity and homogeneous size, asevidenced by XRD and TEM analysis. The FT-IR analysis shows that β-CD is successfully encapsulated on the surface of NaYF4: Yb3+/Tm3+@NaYF4 nanoparticles. The fluorescence intensity 3and lifetime were significantly increased after coating the inert layer on the surface of core nanoparticles. After further surface modification of β-CD, the fluorescence intensity and fluorescence lifetime were reduced, but the overall fluorescence was stronger. Temperature measurements using the fluorescence intensity ratio technique were found to have relatively low reliability and absolute sensitivity for temperature measurements using thermally coupled energy levels. However, the reliability of temperature measurements using non-thermally coupled energy levels is significantly higher and the absolute sensitivity is much higher than for measurements at thermally coupled levels. Since the maximum absolute sensitivity, maximum relative sensitivity and minimum temperature resolution are determined to be 0.1179 K-1, 2.19 %K􀀀 1 and 0.00019 K, respectively, NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles are expected to be widely used in the biomedical field due to their feasibility, reliability, non-toxicity and harmlessness. KW - Upconversion KW - Surface modification KW - Fluorescence intensity ratio KW - Thermally coupled levels KW - Non-thermally coupled levels PY - 2023 U6 - https://doi.org/10.1016/j.optmat.2022.113389 SN - 0925-3467 VL - 136 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-57105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gluth, Gregor A1 - Gaggl, M. A1 - Zhang, W. A1 - Hillemeier, B. A1 - Behrendt, F. ED - Udomkichdecha, W. ED - Böllinghaus, T. ED - Manonukul, A. ED - Lexow, J. T1 - Membranes made of hardened cement paste for processing wood gas - Influence of paste composition and separation factors N2 - The efficiency of wood gasification can be improved by applying membrane based gas separation operations in several of its sub-processes. In the present study the use of membranes made of hardened cement pastes for this purpose was investigated to provide a low cost alternative to conventional membrane materials. The pastes were tested for their diffusional properties in a Wicke-Kallenbach cell and analyzed with regard to their pore structure. The use of low water to binder ratios and slag and/or pozzolans led to a finer pore structure and higher separation factors; in particular, an approximately linear dependence of the separation factors on the threshold radii was observed. The results implicated that Knudsen diffusion is the prevailing diffusion mechanism in the membranes. Deviations from the theoretically expected separation factors were found, which may be ascribed to concentration polarization and channeling effects. KW - Hardened cement paste KW - Pore structure KW - Diffusion KW - Gas separation PY - 2014 SN - 978-3-319-11339-5 SN - 978-3-319-11340-1 U6 - https://doi.org/10.1007/978-3-319-11340-1_20 SP - 199 EP - 209 PB - Springer AN - OPUS4-32065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trimpin, S. A1 - Inutan, E. A1 - Karki, S. A1 - Elia, E. A1 - Zhang, W. A1 - Weidner, Steffen A1 - Marshall, D. A1 - Hoang, K. A1 - Lee, C. A1 - Davis, E. A1 - Smith, V. A1 - Meher, A. A1 - Cornejo, M. A1 - Auner, G. A1 - McEwen, C. T1 - Fundamental studies of new ionization technologies and insights from IMS-MS N2 - Exceptional ion mobility spectrometry mass spectrometry (IMS-MS) developments by von Helden, Jarrold, and Clemmer provided technology that gives a view of chemical/biological compositions previously not achievable. The ionization method of choice used with IMS-MS has been electrospray ionization (ESI). In this Special issue contribution, we focus on fundamentals of heretofore unprecedented means for transferring volatile and nonvolatile compounds into gas-phase ions singly and multiply charged. These newer ionization processes frequently lead to different selectivity relative to ESI and, together with IMS-MS, may provide a more comprehensive view of chemical compositions directly from their original Environment such as surfaces, e.g., tissue. Similarities of results using solvent- and matrix-assisted ionization are highlighted, as are differences between ESI and the inlet ionization methods, especially with mixtures such as bacterial extracts. Selectivity using different matrices is discussed, as are results which add to our fundamental knowledge of inlet ionization as well as pose additional avenues for inquiry. IMS-MS provides an opportunity for comparison studies relative to ESI and will prove valuable using the new ionization technologies for direct analyses. Our hypothesis is that some ESI-IMS-MS applications will be replaced by the new ionization processes and by understanding mechanistic aspects to aid enhanced source and method developments this will be hastened. KW - Inlet ionization KW - Vacuum ionization KW - Matrices KW - Fundamentals KW - Ion mobility PY - 2019 U6 - https://doi.org/10.1007/s13361-019-02194-7 SN - 1044-0305 SN - 1879-1123 VL - 30 IS - 6 SP - 1133 EP - 1147 PB - Springer AN - OPUS4-48011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reed, B. P. A1 - Cant, D.J.H. A1 - Spencer, J. A1 - Carmona-Carmona, A. J. A1 - Bushell, A. A1 - Herrara-Gómez, A. A1 - Kurokawa, A. A1 - Thissen, A. A1 - Thomas, A.G. A1 - Britton, A.J. A1 - Bernasik, A. A1 - Fuchs, A. A1 - Baddorf, A. P. A1 - Bock, B. A1 - Thellacker, B. A1 - Cheng, B. A1 - Castner, D.G. A1 - Morgan, D.J. A1 - Valley, D. A1 - Willneff, E.A. A1 - Smith, E.F. A1 - Nolot, E. A1 - Xie, F. A1 - Zorn, G. A1 - Smith, G.C. A1 - Yasukufu, H. A1 - Fenton, J. L. A1 - Chen, J. A1 - Counsell, J..D.P. A1 - Radnik, Jörg A1 - Gaskell, K.J. A1 - Artyushkova, K. A1 - Yang, L. A1 - Zhang, L. A1 - Eguchi, M. A1 - Walker, M. A1 - Hajdyla, M. A1 - Marzec, M.M. A1 - Linford, M.R. A1 - Kubota, N. A1 - Cartazar-Martínez, O. A1 - Dietrich, P. A1 - Satoh, R. A1 - Schroeder, S.L.M. A1 - Avval, T.G. A1 - Nagatomi, T. A1 - Fernandez, V. A1 - Lake, W. A1 - Azuma, Y. A1 - Yoshikawa, Y. A1 - Shard, A.G. T1 - Versailles Project on Advanced Materials and Standards interlaboratory study on intensity calibration for x-ray photoelectron spectroscopy instruments using low-density polyethylene N2 - We report the results of a Versailles Project on Advanced Materials and Standards interlaboratory study on the intensity scale calibration of x-ray photoelectron spectrometers using low-density polyethylene (LDPE) as an alternative material to gold, silver, and copper. An improved set of LDPE reference spectra, corrected for different instrument geometries using a quartz-monochromated Al Kα x-ray source, was developed using data provided by participants in this study. Using these new reference spectra, a transmission function was calculated for each dataset that participants provided. When compared to a similar calibration procedure using the NPL reference spectra for gold, the LDPE intensity calibration method achieves an absolute offset of ∼3.0% and a systematic deviation of ±6.5% on average across all participants. For spectra recorded at high pass energies (≥90 eV), values of absolute offset and systematic deviation are ∼5.8% and ±5.7%, respectively, whereas for spectra collected at lower pass energies (<90 eV), values of absolute offset and systematic deviation are ∼4.9% and ±8.8%, respectively; low pass energy spectra perform worse than the global average, in terms of systematic deviations, due to diminished count rates and signal-to-noise ratio. Differences in absolute offset are attributed to the surface roughness of the LDPE induced by sample preparation. We further assess the usability of LDPE as a secondary reference material and comment on its performance in the presence of issues such as variable dark noise, x-ray warm up times, inaccuracy at low count rates, and underlying spectrometer problems. In response to participant feedback and the results of the study, we provide an updated LDPE intensity calibration protocol to address the issues highlighted in the interlaboratory study. We also comment on the lack of implementation of a consistent and traceable intensity calibration method across the community of x-ray photoelectron spectroscopy (XPS) users and, therefore, propose a route to achieving this with the assistance of instrument manufacturers, metrology laboratories, and experts leading to an international standard for XPS intensity scale calibration. KW - X-ray photoelectron spectroscopy KW - Transmission function KW - Intensity scale calibration KW - Reference spectra KW - Low-density polyethylene (LDPE) PY - 2020 U6 - https://doi.org/10.1116/6.0000577 VL - 38 IS - 6 SP - 063208 AN - OPUS4-51655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, H. A1 - Song, W. A1 - Gröninger, Delia A1 - Zhang, L. A1 - Lu, Y. A1 - Chan, K. S. A1 - Zhou, Z. A1 - Rurack, Knut A1 - Shen, Z. T1 - Real-time monitoring of newly acidified organelles during autophagy enabled by reaction-based BODIPY dyes N2 - Real-time monitoring of newly acidified organelles during autophagy in living cells is highly desirable for a better understanding of intracellular degradative processes. Herein, we describe a reaction-based boron dipyrromethene (BODIPY) dye containing strongly electron-withdrawing diethyl 2-cyanoacrylate groups at the α-positions. The probe exhibits intense red fluorescence in acidic organelles or the acidified cytosol while negligible fluorescence in other regions of the cell. The underlying mechanism is a nucleophilic reaction at the central meso-carbon of the indacene core, resulting in the loss of π-conjugation entailed by dramatic spectroscopic changes of more than 200 nm between its colorless, non-fluorescent leuco-BODIPY form and its red and brightly emitting form. The reversible transformation between red fluorescent BODIPY and leuco-BODIPY along with negligible cytotoxicity qualifies such dyes for rapid and direct intracellular lysosome imaging and cytosolic acidosis detection simultaneously without any washing step, enabling the real-time monitoring of newly acidified organelles during autophagy. KW - Autophagy KW - BODIPY KW - Fluorescence KW - Lysosome KW - Real-time imaging PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-498358 UR - https://www.nature.com/articles/s42003-019-0682-1 SN - 23993642 VL - 2 SP - 442 PB - Nature Research CY - London AN - OPUS4-49835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, X.M. A1 - Li, H.M. A1 - Zhang, Q.H. A1 - Lu, X.H. A1 - Li, S.Q. A1 - Koch, Matthias A1 - Polzer, J. A1 - Hackenber, R. A1 - Moniruzzaman, M. A1 - Khan, M. A1 - Kakoulides, E. A1 - Pak-Wing, K. A1 - Richy, A1 - Chi-Shing, N. A1 - Lu, T. A1 - Gui, E.M. A1 - Cheow, P.S. A1 - Teo, T.L. A1 - Rego, E. A1 - Garrido, B. A1 - Carvalho, L. A1 - Leal, R. A1 - Violante, F. A1 - Baek, S.Y. A1 - Lee, S. A1 - Choi, K. A1 - Kim, B. A1 - Bucar-Miklavcic, M. A1 - Hopley, C. A1 - Nammoonnoy, J. A1 - Murray, J. A1 - Wilson, W. A1 - Toman, B. A1 - Itoh, N. A1 - Gokcen, T. A1 - Krylov, A. A1 - Mikheeva, A. T1 - CCQM-K146 low-polarity analyte in high fat food: benzo a pyrene in olive oil N2 - The demonstration of competency and equivalence for the assessment of levels of contaminants and nutrients in primary foodstuffs is a priority within the 10-year strategy for the OAWG Track A core comparisons. The measurements are core challenges for reference material producers and providers of calibration Services. This key comparison related to low polarity analytes in a high fat, low protein, low carbohydrate food matrix and Benzo[a]pyrene in edible oil was the model System selected to align with this class within the OAWG strategy. Evidence of successful participation in formal, relevant international comparisons is needed to document measurement capability claims (CMCs) made by national metrology institutes (NMIs) and designated institutes (Dis). 16 National Metrology Institutions participated in the Track A Key Comparison CCQM-K146 Low-Polarity Analyte in high fat food: Benzo[a]pyrene in Olive Oil. Participants were requested to evaluate the mass fractions, expressed in µg/kg, of Benzo[a]pyrene in the olive oil material. The KCRV was determined from the results of all NMIs/DIs participating in the key comparison that used appropriately validated methods with demonstrated metrological traceability. Different methods such as liquid-liquid extraction, GPC and SPE were applied in the sample pretreatment and HPLC-FLD, HPLC-MS/MS, and GC-MS or GC-MS/MS were applied for detection by the participants. The mass fractions for BaP were in the range of (1.78 to 3.09) µg/kg with Standard uncertainties of (0.026 to 0.54) µg/kg, with corresponding relative Standard uncertainties from 0.9% to 21%. Five labs withdrew their result from the Statistical evaluation of the KCRV for technical reasons. One lab was excluded from the KCRV evaluation, as they did not meet the CIPM metrological traceability requirements. A Hierarchical Bayes option was selected for the KCRV value, which was determined as 2.74 µg/kg with a Standard uncertainty of 0.03 µg/kg. The 10 institutes those were included in the calculation of the consensus KCRV all agreed within their Standard uncertainties. Successful participation in CCQM-K146 demonstrates the measurement capabilities in determining mass fraction of organic compounds, with molecular mass of 100 g/mol to 500 g/mol, having low polarity pKow < -2, in mass fraction range from 0.1 µg/kg to 1000 µg/kg in a high fat, low protein, low carbohydrate food matrix. KW - Metrology KW - CCQM KW - Food KW - PAH PY - 2020 U6 - https://doi.org/10.1088/0026-1394/57/1a/08017 VL - 57 IS - 1a SP - 08017 AN - OPUS4-52435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reed, B. P. A1 - Cant, D.J.H. A1 - Spencer, S.J. A1 - Carmona-Carmona, A. J. A1 - Bushell, A. A1 - Herrara-Gómez, A. A1 - Kurokawa, A. A1 - Thissen, A. A1 - Thomas, A.G. A1 - Britton, A.J. A1 - Bernasik, A. A1 - Fuchs, A. A1 - Baddorf, A.P. A1 - Bock, B. A1 - Thellacker, B. A1 - Cheng, B. A1 - Castner, D.G. A1 - Morgan, D.J. A1 - Valley, D. A1 - Willneff, E.A. A1 - Smith, E.P. A1 - Nolot, E. A1 - Xie, F. A1 - Zorn, G. A1 - Smith, G.C. A1 - Yasukufu, H. A1 - Fenton, J.L. A1 - Chen, J. A1 - Counsell, J.D.P. A1 - Radnik, Jörg A1 - Gaskell, K.J. A1 - Artyushkova, K. A1 - Yang, L. A1 - Zhang, L. A1 - Eguchi, M. A1 - Walker, M. A1 - Hajdyla, M. A1 - Marzec, M.M. A1 - Linford, M.R. A1 - Kubota, N. A1 - Cortazar-Martinez, O. A1 - Dietrich, P. A1 - Satoh, R. A1 - Schroeder, S.L.M. A1 - Avval, T.G. A1 - Nagatomi, T. A1 - Fernandez, V. A1 - Lake, W. A1 - Azuma, Y. A1 - Yoshikawa, Y. A1 - Compean-Gonzalez, C.L. A1 - Ceccone, G. A1 - Shard, A.G. T1 - ERRATUM: “Versailles project on advanced materials and standards interlaboratory study on intensity calibration for x-ray photoelectron spectroscopy instruments using low-density polyethylene” [J. Vac. Sci. Technol. A 38, 063208 (2020)] N2 - The lead authors failed to name two collaborators as co-authors. The authors listed should include: Miss Claudia L. Compean-Gonzalez (ORCID: 0000-0002-2367-8450) and Dr. Giacomo Ceccone (ORCID: 0000-0003-4637-0771). These co-authors participated in VAMAS project A27, provided data that were analyzed and presented in this publication (and supporting information), and reviewed the manuscript before submission. KW - X-ray photoelectron spectroscopy KW - Transmission function KW - Low-density polyethylene PY - 2021 U6 - https://doi.org/10.1116/6.0000907 VL - 39 IS - 2 SP - 027001 PB - American Vacuum Society AN - OPUS4-52380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, A1 - Zheng, A1 - Zhang, A1 - Lu, A1 - Wang, A1 - Kunte, Hans-Jörg A1 - Sand, W. T1 - Long Term Temperature and Humidity Evolution Forecast in Near Field of Nuclear Waste Container N2 - The paper aims to simulate the corrosion environment of nuclear waste containers at different geological disposal periods to obtain temperature and humidity information at the interface between the container and the surrounding environment. The simulated data and calculation results of long term temperature evolution at the surface of nuclear waste (HLW) containers from some typical nuclear countries about the safety disposition were reviewed. Combining different burial patterns, this paper speculated the long term temperature evolution rule for China. According to the study about saturation variation of buffer/backfill material at home and abroad, the humidity evolution of bentonite at the surface of HLW containers was specu- lated. The study showed that the temperature of the container surface increased rapidly at the beginning, and gradually decreased after the climax. For safety reasons, the maximum temperature was designed below 100°C. The saturation of bentonite was af- fected by the mutual influences of the heat released by nuclear waste decay and the infiltration of groundwater. It was dominated by the released heat in the early stage, and later was influenced greatly by the infiltration of groundwater. It is generally believed that the water content at the surface of the container will increase obviously in about 3 years, and will be saturated in about 10 years. The prediction of long-term temperature and humidity evolution will lay a foundation for study of corrosion evolution of nuclear waste containers in China. KW - Corrosion evolution KW - Nuclear waste KW - Disposal repository KW - Temperature and humidity PY - 2018 SN - 1672-9242 VL - 15 IS - 10 SP - 109 EP - 113 PB - Zhongguo Bingqi Gongye di-wujiu Yanjiusuo CY - Chongqing AN - OPUS4-46953 LA - zho AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, Y.-L. A1 - Zheng, A1 - Zhang, A1 - Lu, A1 - Wang, A1 - Kunte, Hans-Jörg A1 - Sand, W. T1 - Forecast on Long Term Chemical Environment Evolution on Surface of Nuclear Waste Container N2 - Surface environment changes of nuclear waste container, mainly including oxygen contents, buffer pore water components and pH under the conditions of “borehole” type and “In-floor” type with bentonite buffer/backfill and concrete buffer were summarized. This summarization provides a basic corrosion environment reference for the corrosion evolution re- search of high-level radioactive waste disposal repository in our country. KW - Corrosion evolution KW - Nuclear waste KW - Disposal repository KW - Corrosion environment PY - 2018 U6 - https://doi.org/10.7643/ issn.1672-9242.2018.10.017 SN - 1672-9242 VL - 15 IS - 10 SP - 103 EP - 108 PB - Zhongguo Bingqi Gongye di-wujiu Yanjiusuo CY - Chongqing AN - OPUS4-46952 LA - zho AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, F. A1 - Cheng, J. A1 - Liang, S. B. A1 - Ke, C. B. A1 - Cao, S. S. A1 - Zhang, X. P. A1 - Zizak, I. A1 - Manzoni, Anna Maria A1 - Yu, J. M. A1 - Wanderka, N. A1 - Li, W. T1 - Formation and evolution of hierarchical microstructures in a Ni-based superalloy investigated by in situ high-temperature synchrotron X-ray diffraction N2 - Hierarchical microstructures are created when additional γ particles form in γ’ precipitates and they are linked to improved strength and creep properties in high-temperature alloys. Here, we follow the formation and evolution of a hierarchical microstructure in Ni86.1Al8.5Ti5.4 by in situ synchrotron X-ray diffraction at 1023 K up to 48 h to derive the lattice parameters of the γ matrix, γ’ precipitates and γ particles and misfits between phases. Finite element method-based computer simulations of hierarchical microstructures allow obtaining each phase's lattice parameter, thereby aiding peak identification in the in situ X-ray diffraction data. The simulations further give insight into the heterogeneous strain distribution between γ’ precipitates and γ particles, which gives rise to an anisotropic diffusion potential that drives the directional growth of γ particles. We rationalize a schematic model for the growth of γ particles, based on the Gibbs-Thomson effect of capillary and strain-induced anisotropic diffusion potentials. Our results highlight the importance of elastic properties, elastic anisotropy, lattice parameters, and diffusion potentials in controlling the behavior and stability of hierarchical microstructures. KW - XRD KW - Superalloy KW - Finite element method KW - Transmission electron microscopy PY - 2022 U6 - https://doi.org/10.1016/j.jallcom.2022.165845 SN - 0925-8388 VL - 919 SP - 1 EP - 17 PB - Elsevier CY - Lausanne AN - OPUS4-55394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, W.-H. A1 - Qin, J. A1 - Lu, D.-G. A1 - Thöns, Sebastian A1 - Havbro Faber, M. T1 - Vol-informed decision-making for SHM system arrangement N2 - Structural health monitoring systems have been widely implemented to provide real-time continuous data support and to ensure structural safety in the context of structural integrity management. However, the quantification of the potential benefits of structural health monitoring systems has not yet attracted widespread attention. At the same time, there is an urgent need to develop strategies, such as optimizing the monitoring period, monitoring variables, and other factors, to maximize the potential benefits of structural health monitoring systems. Considering the continuity of structural health monitoring information, a framework is developed in this article to support decision-making for structural Health monitoring systems arrangement in the context of structural integrity management, which integrates the concepts of value of information and risk-based inspection planning based on an approach which utilizes a conjugate prior probability distribution for updating of the probabilistic models of structural performances based on structural health Monitoring information. An example considering fatigue degradation of steel structures is investigated to illustrate the application of the proposed framework. The considered example shows that the choice of monitoring variables, the Monitoring period, and the monitoring quality may be consistently optimized by the application of the proposed framework and approach. Finally, discussions and conclusions are provided to clarify the potential benefits of the proposed Framework with a special view to practical applications of structural health monitoring systems. KW - Value of information KW - Structural health monitoring systems arrangement strategy KW - Structural integrity management KW - Rskbased inspection KW - Structural health monitoring information model PY - 2020 U6 - https://doi.org/10.1177/1475921720962736 SN - 1475-9217 VL - 21 IS - 1 SP - 37 EP - 58 PB - SAGE Journals CY - USA AN - OPUS4-53064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Na, S.-J. A1 - Han, S.-W. A1 - Muhammad, S. A1 - Zhang, L. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Karhu, M. A1 - Kujanpa, V. T1 - Flow and Bead Formation Characteristics in High Power Laser Welding at Different Welding Positions (Invited Talk) N2 - The numerical simulations of high power laser keyhole welding at different welding positions are performed by using Volume-Of-Fluid (VOF) method. The main material is SS400. The multi-physics phenomenon is considered using several models, such as the heat flux of Gaussian heat source, the recoil pressure with Clausisus-Clapeyron equation, the Marangoni flow considering temperature gradient, the buoyancy force with Boussinesq approximation, the additional shear stress and heat source due to metallic vapor ejected through keyhole entrance, the bubble formation assumed as adiabatic bubble, and the multiple-reflection by solving proper discriminant, are used. To analyze the fluid flow pattern, the concept of streamline formed by reconstructing the value of the velocity vector is applied. Partial and full penetration cases at different welding positions are considered. The welding position seems to have only a minor influence on bead formation characteristics in both cases. This is probably due to the fact that the recoil pressure has a major influence when compared to other driving forces. The flow characteristics and fluid velocity in weld pool are analyzed to compare the gravity direction effect at different welding positions. It is observed that the clockwise flow pattern is mainly formed by the recoil pressure on the keyhole surface in the case of partial penetration. The laser energy can't maintain the whole weld pool when the weld pool size becomes too large. And then the solidification starts from the middle part of weld pool and a necked weld pool shape is formed. In the full penetration welding, the weld pool flow patterns are affected by the leakage of laser power through the full penetration keyhole and also by surface tension. Furthermore, the numerical simulation of full penetration welding with AISI316L is also performed to analyze the effect of material properties. The weld bead shapes obtained by simulations were compared with the corresponding experimental results to confirm the validity of the process models adopted and the CFD simulation tool. T2 - Lasers in Manufacturing Conference 2015 CY - München, Germany DA - 22.06.2015 KW - Macro Processing (Joining, Welding) KW - Weld pool KW - Flow pattern KW - Different welding position KW - Numerical simulation KW - High power laser keyhole welding PY - 2015 SP - 1 EP - 6 AN - OPUS4-37163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -