TY - RPRT A1 - Göbel, E. O. A1 - Hasche, K. A1 - Ulm, G. A1 - Krumrey, M. A1 - Ade, G. A1 - Stümpel, J. A1 - Herrmann, K. A1 - Koenders, L. A1 - Thomsen-Schmidt, P. A1 - Pohlenz, F. A1 - Xu, M. A1 - Dai, G. A1 - Hoffmann, K.-P. A1 - Busch, I. A1 - Frank, W. A1 - Procop, M. A1 - Beck, Uwe T1 - Kalibrierte Schichtdicken-Maßverkörperungen für Nanometerschichten, Teilvorhaben - Kalibrierung von Schichtdicken-Maßverkörperungen im Nanometerbereich - Abschlussbericht des BMBF Verbundvorhabens 13N7704 - 13N77041 KW - Schichtdicke KW - Nanometerbereich PY - 2003 UR - http://edok01.tib.uni-hannover.de/edoks/e01fb02/373214030.pdf SP - 1 EP - 131 PB - Physikalisch-Technische Bundesanstalt CY - Dresden AN - OPUS4-25428 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schmidt, Birgit A1 - Koch, W. A1 - Pentzien, Simone A1 - Krüger, Jörg ED - Gabsch, T. T1 - Der Einsatz von Lasertechnik an Modellsystemen zentralasiatischer Wandmalereifragmente KW - Laserreinigung KW - Wandmalerei KW - Verrußung KW - Kunststoffschicht KW - Probekörper PY - 2012 SN - 978-3-7338-0385-8 IS - Kap. 10 SP - 152 EP - 157 PB - Koehler & Amelang GmbH AN - OPUS4-26178 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Priebe, Nsesheye Susan A1 - Schmidt, W. T1 - Spearhead network for innovative, clean and safe cement and concrete technologies (SPIN) project in east, central and southern Africa T2 - 2nd Environmental cement Africa conference CY - Nairobi, Kenya DA - 2011-05-11 KW - SPIN KW - Africa KW - Cement KW - Concrete KW - Construction PY - 2011 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 1 EP - 3(?) AN - OPUS4-25156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Fischer, C. A1 - Schmidt, Martin A1 - Meyer, U. A1 - Barth, Uli A1 - Drebenstedt, C. A1 - Wuttke, M. W. T1 - Innovative Technologien für die Erkundung, Löschung und Beobachtung von Kohlebränden - Phase B - N2 - Aufbauend auf den Erkenntnissen der Phase A, die sich auf das grundlegende Verständnis von Kohlebränden, sowie der Voraussetzung und des prinzipiellen Ablaufs der physikalischchemischen Brandprozesse konzentriert haben, erfolgte in Phase B eine Fokussierung auf Methoden zur Vermeidung von Kohlebränden, sowie der Löschung und Überwachung von Kohlebrandzonen, um einen Beitrag zur Verminderung von C02-Emissionen und zum Erhalt der nutzbaren Energieressourcen leisten zu können. Diese Arbeiten erfolgten insbesondere mit Bezug zu den „Clean Development Mechanisms“ (CDM), die im Rahmen des Kyoto-Protokolls entwickelt worden sind. Eine Zertifizierung von Löschaktivitäten im Rahmen des Kyoto-Protokolls setzt dabei eine nachvollziehbare Ermittlung der kohlebrandbezogenen C02-Emissionen und eine belastbare Abschätzung der durch die Löschung verringerten Emissionsmengen voraus. Wesentliche Arbeiten konzentrierten sich auf die Entwicklung von Verfahren, die eine solche Abschätzung gewährleisten können. Dazu wurden unterschiedliche Ansätze entwickelt und anhand der erhobenen Felddaten überprüft. Die untersuchten Ansätze konzentrierten sich dabei auf Verfahren, die eine Ermittlung des vorhandenen Kohlevolumens, die Erfassung der emittierten Gase und die durch die Kohlebrände verursachten Temperaturanomalien an der Tagesoberfläche ermöglichen. Die direkten Arbeiten zum Thema CDM wurden dabei in einem Arbeitspaket unter Federführung der BGR gebündelt. Die deutsche Initiative zur Erforschung der Kohlenbrände in der V.R. China leistete zweifelsfrei signifikante Beiträge zu den oben genannten Zielen. Durch die inventiven Ansätze im Bereich der Brandbewältigung konnte darüber hinaus auch in Teilen die ökonomischen Chancen für ein Engagement deutscher Unternehmen aufgezeigt werden. KW - Kohlebrände KW - Brandbekämpfung KW - Branderkundung PY - 2011 DO - https://doi.org/10.2314/GBV:664529690 SP - 1 EP - 39 AN - OPUS4-25013 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wessling, S. A1 - Kessels, W. A1 - Schmidt, Martin A1 - Krause, Ulrich T1 - Investigating dynamic underground coal fires by means of numerical simulation N2 - Uncontrolled burning or smoldering of coal seams, otherwise known as coal fires, represents a worldwide natural hazard. Efficient application of fire-fighting strategies and prevention of mining hazards require that the temporal evolution of fire propagation can be sufficiently precise predicted. A promising approach for the investigation of the temporal evolution is the numerical simulation of involved physical and chemical processes. In the context of the Sino-German Research Initiative ‘Innovative Technologies for Detection, Extinction and Prevention of Coal Fires in North China,’ a numerical model has been developed for simulating underground coal fires at large scales. The objective of such modelling is to investigate observables, like the fire propagation rate, with respect to the thermal and hydraulic parameters of adjacent rock. In the model, hydraulic, thermal and chemical processes are accounted for, with the last process complemented by laboratory experiments. Numerically, one key challenge in modelling coal fires is to circumvent the small time steps resulting from the resolution of fast reaction kinetics at high temperatures. In our model, this problem is solved by means of an ‘operator-splitting’ approach, in which transport and reactive processes of oxygen are independently calculated. At high temperatures, operator-splitting has the decisive advantage of allowing the global time step to be chosen according to oxygen transport, so that time-consuming simulation through the calculation of fast reaction kinetics is avoided. Also in this model, because oxygen distribution within a coal fire has been shown to remain constant over long periods, an additional extrapolation algorithm for the coal concentration has been applied. In this paper, we demonstrate that the operator-splitting approach is particularly suitable for investigating the influence of hydraulic parameters of adjacent rocks on coal fire propagation. A study shows that dynamic propagation strongly depends on permeability variations. For the assumed model, no fire exists for permeabilities k < 10-10 m2, whereas the fire propagation velocity ranges between 340 m a-1 for k = 10-8 m2, and drops to lower than 3 m a-1 for k = 5 × 10-10 m2. Additionally, strong temperature variations are observed for the permeability range 5 × 10-10 m2 < k < 10-8 m2. KW - Numerical solutions KW - Underground coal fires KW - Hydrothermal systems PY - 2008 DO - https://doi.org/10.1111/j.1365-246X.2007.03568.x SN - 0956-540X SN - 1365-246X VL - 172 IS - 1 SP - 439 EP - 454 PB - Blackwell CY - Oxford AN - OPUS4-16649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thomsen-Schmidt, P. A1 - Hasche, K. A1 - Ulm, G. A1 - Herrmann, K. A1 - Krumrey, M. A1 - Ade, G. A1 - Stümpel, J. A1 - Busch, I. A1 - Schädlich, S. A1 - Schindler, A. A1 - Frank, W. A1 - Hirsch, D. A1 - Procop, Mathias A1 - Beck, Uwe T1 - Realisation and metrological characterisation of thickness standards below 100 nm N2 - High-accuracy film thickness measurements in the range below 100 nm can be made by various complex methods like spectral ellipsometry (SE), scanning force microscopy (SFM), grazing incidence X-ray reflectometry (GIXR), or X-ray fluorescence analysis (XRF). The measurement results achieved with these methods are based on different interactions between the film and the probe. A key question in nanotechnology is how to achieve consistent results on a level of uncertainty below one nanometre with different techniques. Two different types of thickness standards are realised. Metal film standards for X-ray techniques in the thickness range 10 to 50 nm are calibrated by GIXR with monochromatised synchrotron radiation of 8048 eV. The results obtained at four different facilities show excellent agreement. SiO2 on Si standards for SE and SFM in the thickness range 6 to 1000 nm are calibrated by GIXR with monochromatised synchrotron radiation of 1841 eV and with a metrological SFM. Consistent results within the combined uncertainties are obtained with the two methods. Surfaces and interfaces of both types of standards are additionally investigated by transmission electron microscopy (TEM). PY - 2004 DO - https://doi.org/10.1007/s00339-003-2273-7 SN - 0947-8396 VL - 78 IS - 5 SP - 645 EP - 649 PB - Springer CY - Berlin AN - OPUS4-17195 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, T. A1 - Dai, Z. A1 - Drexler, H.-J. A1 - Baumann, W. A1 - Jäger, Christian A1 - Pfeifer, Dietmar A1 - Heller, D. T1 - Novel contributions to the mechanism of the enantioselective hydrogenation of dimethyl itaconate with rhodium complexes KW - Enantioselective Hydrogenation KW - Rhodium-Phosphor-Complex KW - Powder Diffractometry KW - Hr- and Solid State NMR-Spectroscpy KW - Asymmetric catalysis KW - Hydrogenation KW - Kinetics KW - Reaction mechanisms KW - Rhodium PY - 2008 DO - https://doi.org/10.1002/chem.200800389 SN - 0947-6539 SN - 1521-3765 VL - 14 IS - 15 SP - 4469 EP - 4471 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-18368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tötzke, C. A1 - Gaiselmann, G. A1 - Osenberg, M. A1 - Bohner, J. A1 - Arlt, Tobias A1 - Markötter, H. A1 - Hilger, A. A1 - Wieder, F. A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Hentschel, Manfred P. A1 - Banhart, J. A1 - Schmidt, V. A1 - Lehnert, W. A1 - Manke, I. T1 - Three-dimensional study of compressed gas diffusion layers using synchrotron X-ray imaging N2 - We present a synchrotron X-ray tomographic study on the morphology of carbon fiber-based gas diffusion layer (GDL) material under compression. A dedicated compression device is used to provide well-defined compression conditions. A flat compression punch is employed to study the fiber geometry at different degrees of compression. Transport relevant geometrical parameters such as porosity, pore size and tortuosity distributions are calculated. The geometric properties notably change upon compression which has direct impact on transport conditions for gas and fluid flow. The availability of broad 3D paths, which are most important for the transport of liquid water from the catalyst layer through the GDL, is markedly reduced after compression. In a second experiment, we study the influence of the channel-land-pattern of the flow-field on shape and microstructure of the GDL. A flow-field compression punch is employed to reproduce the inhomogeneous compression conditions found during fuel cell assembly. While homogenously compressed underneath the land the GDL is much less and inhomogeneously compressed under the channel. The GDL material extends far into the channel volume where it can considerably influence gas and fluid flow. Loose fiber endings penetrate deeply into the channel and form obstacles for the discharge of liquid water droplets. KW - Synchrotron X-ray tomography KW - Gas diffusion layer (GDL) KW - Microstructure KW - Water transport path KW - Pore size analysis KW - Geometrical tortuosity PY - 2014 DO - https://doi.org/10.1016/j.jpowsour.2013.12.062 SN - 0378-7753 VL - 253 SP - 123 EP - 131 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-29979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Dejian A1 - Tan, X. A1 - Wei, A. A1 - Duan, Q. A1 - Huang, W. A1 - Schmidt, Martin T1 - Ignition temperature and mechanism of carbonaceous dust clouds: The roles of volatile matter, CH4 addition, O2 mole fraction and diluent gas N2 - Minimum ignition temperature of dust clouds (MITC) was studied experimentally and theoretically in different atmospheres. Three carbonaceous dusts were tested in both air and O2/CO2 atmospheres with CH4 mole fraction from 0 to 2%. Results showed that the ignition risk of the three dusts significantly increases (decrease of MITC by ~100 ℃) with increasing XO2 from 21% to 50%, but significantly decreases replacing N2 in air with CO2. The inhibition effect of CO2 on MITCs could be diminished by increasing XO2 or adding CH4. The addition of small amount of CH4 has different effects on the MITCs of different dust samples, following the opposite order of volatile matter content: anthracite>bituminous coal>starch. Two modified steady-state ignition models, considering the density of mixture gas and dust cloud, XO2 and its diffusivity, were developed to interpret the experimental observations. The analysis revealed that the global heterogeneous ignition model suits well for the hybrid mixtures of anthracite or bituminous coal dusts. In contrast, the proposed global homogeneous ignition model was found to be only valid for the pure starch dust, and the extra CH4 addition could strongly affect the ignition process of starch, particularly in O2/CO2 atmospheres with higher XO2. KW - Dust explosions KW - Gas explosions KW - Minimum ignition temperature KW - Hybrid mixtures PY - 2021 DO - https://doi.org/10.1016/j.jhazmat.2020.124189 SN - 0304-3894 SN - 1873-3336 VL - 405 SP - 1 EP - 10 PB - Elsevier CY - Amsterdam AN - OPUS4-53838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tötzke, C. A1 - Gaiselmann, G. A1 - Osenberg, M. A1 - Arlt, Tobias A1 - Markötter, H. A1 - Hilger, A. A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Schmidt, V. A1 - Lehnert, W. A1 - Manke, I. T1 - Influence of hydrophobic treatment on the structure of compressed gas diffusion layers N2 - Carbon fiber based felt materials are widely used as gas diffusion layer (GDL) in fuel cells. Their transport properties can be adjusted by adding hydrophobic agents such as polytetrafluoroethylene (PTFE). We present a synchrotron X-ray tomographic study on the felt material Freudenberg H2315 with different PTFE finishing. In this study, we analyze changes in microstructure and shape of GDLs at increasing degree of compression which are related to their specific PTFE load. A dedicated compression device mimicking the channel-land pattern of the flowfield is used to reproduce the inhomogeneous compression found in a fuel cell. Transport relevant geometrical parameters such as porosity, pore size distribution and geometric tortuosity are calculated and consequences for media transport discussed. PTFE finishing results in a marked change of shape of compressed GDLs: surface is smoothed and the invasion of GDL fibers into the flow field channel strongly mitigated. Furthermore, the PTFE impacts the microstructure of the compressed GDL. The number of available wide transport paths is significantly increased as compared to the untreated material. These changes improve the transport capacity liquid water through the GDL and promote the discharge of liquid water droplets from the cell. KW - Gas diffusion layer KW - Synchrotron Tomography KW - Compression KW - Hydrophobic treatment KW - Water transport PY - 2016 DO - https://doi.org/10.1016/j.jpowsour.2016.05.118 SN - 0378-7753 VL - 324 SP - 625 EP - 636 PB - Elsevier CY - Amsterdam AN - OPUS4-36918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tötzke, C. A1 - Manke, I. A1 - Gaiselmann, G. A1 - Bohner, J. A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Hentschel, Manfred P. A1 - Schmidt, V. A1 - Banhart, J. A1 - Lehnert, W. T1 - A dedicated compression device for high resolution X-ray tomography of compressed gas diffusion layers N2 - We present an experimental approach to study the three-dimensional microstructure of gas diffusion layer (GDL) materials under realistic compression conditions. A dedicated compression device was designed that allows for synchrotron-tomographic investigation of circular samples under well-defined compression conditions. The tomographic data provide the experimental basis for stochastic modeling of nonwoven GDL materials. A plain compression tool is used to study the fiber courses in the material at different compression stages. Transport relevant geometrical parameters, such as porosity, pore size, and tortuosity distributions, are exemplarily evaluated for a GDL sample in the uncompressed state and for a compression of 30 vol.%. To mimic the geometry of the flow-field, we employed a compression punch with an integrated channel-rib-profile. It turned out that the GDL material is homogeneously compressed under the ribs, however, much less compressed underneath the channel. GDL fibers extend far into the channel volume where they might interfere with the convective gas transport and the removal of liquid water from the cell. KW - PEM fuel cell KW - Gas diffusion layer (GDL) KW - Compression device KW - X-ray tomography KW - Synchrotron KW - Tortuosity PY - 2015 DO - https://doi.org/10.1063/1.4918291 SN - 0034-6748 SN - 1089-7623 VL - 86 IS - 4 SP - 043702-1 EP - 043702-6 PB - American Institute of Physics CY - Melville, NY, USA AN - OPUS4-33081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Dejian A1 - Schmidt, Martin A1 - Tan, X. A1 - Zhao, P. A1 - Huang, W. A1 - Qian, X. T1 - Minimum ignition temperature of carbonaceous dust clouds in air with CH4/H-2/CO below the gas lower explosion limit N2 - Godbert-Greenwald furnace was used to investigate the minimum ignition temperature of dust clouds (MITC) in air with the presence of flammable gas which is lower than its lower explosion limit (LEL). Three flammable gases (CH4, H2 and CO) and three carbonaceous dusts (anthracite coal, bituminous coal and sweet potato starch) were tested. Results showed that all flammable gases have distinct effects on the MITC of the dust samples and volatile matter content of dust plays an important role during the ignition process. Specifically, the MITC of anthracite coal dust decreased from 610 °C to 560 °C, 580 °C and 570 °C with 3% CH4, 3% CO and 2.5% H2, respectively. Moreover, a heterogeneous ignition mechanism model was proposed to verify the equally global ignition characteristic between hybrid anthracite coal-CxHy mixture and bituminous coal. All three gases had an ignorable effect on the MITC of starch dust considering the experimental error. The presence of CO and H2 slightly promoted the ignition of bituminous coal dust, but the addition of CH4 showed a distinct concentration effect on the MITC of bituminous coal: the MITC decreased with 1% CH4 while increased with 2% and 3% CH4. This negative-effect of flammable gases at such low concentrations on ignition temperature of bituminous coal dusts was found for the first time. Furthermore, the presence of the 2nd flammable gas had a smaller effect on the MITC of dust samples with a higher volatile content, resulted from the competition of heterogeneous and homogeneous ignition mechanisms. KW - Dust explosions KW - Gas explosions KW - Minimum ignition temperature KW - Hybrid mixtures PY - 2020 DO - https://doi.org/10.1016/j.fuel.2019.116811 SN - 0016-2361 VL - 264 SP - 116811 PB - Elsevier Ltd. AN - OPUS4-50856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Birgit Angelika A1 - Ziemann, M. A A1 - Pentzien, Simone A1 - Gabsch, T. A1 - Koch, W. A1 - Krüger, Jörg T1 - Technical analysis of a Central Asian wall painting detached from a Buddhist cave temple on the northern Silk Road N2 - A great number of Central Asian wall paintings, archeological materials, architectural fragments, and textiles, as well as painting fragments on silk and paper, make up the so called Turfan Collection at the Asian Art Museum in Berlin. The largest part of the collection comes from the Kucha region, a very important cultural center in the third to ninth centuries. Between 1902 and 1914, four German expeditions traveled along the northern Silk Road. During these expeditions, wall paintings were detached from their original settings in Buddhist cave complexes. This paper reports a technical study of a wall painting, existing in eight fragments, from the Buddhist cave no. 40 (Ritterhöhle). Its original painted surface is soot blackened and largely illegible. Grünwedel, leader of the first and third expeditions, described the almost complete destruction of the rediscovered temple complex and evidence of fire damage. The aim of this case study is to identify the materials used for the wall paintings. Furthermore, soot deposits as well as materials from conservation interventions were of interest. Non-invasive analyses were preferred but a limited number of samples were taken to provide more precise information on the painting technique. By employing optical and scanning electron microscopy, energy dispersive X-ray spectroscopy, micro X-ray fluorescence spectroscopy, X-ray diffraction analysis, and Raman spectroscopy, a layer sequence of earthen render, a ground layer made of gypsum, and a paint layer containing a variety of inorganic pigments were identified. KW - Wall paintings KW - Central Asia KW - Silk Road KW - Pigments KW - Microscopy PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-357297 DO - https://doi.org/10.1179/2047058414Y.0000000152 VL - 61 IS - 2 SP - 113 EP - 122 PB - Routledge Taylor & Francis Group CY - London AN - OPUS4-35729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rödiger, S. A1 - Liebsch, C. A1 - Schmidt, C. A1 - Lehmann, W. A1 - Resch-Genger, Ute A1 - Schedler, U. A1 - Schierack, P. T1 - Nucleic acid detection based on the use of microbeads: a review N2 - Microbead-based technologies represent elegant and versatile approaches for highly parallelized quantitative multiparameter assays. They also form the basis of various techniques for detection and quantification of nucleic acids and proteins. Nucleic acid-based methods include hybridization assays, solid-phase PCR, sequencing, and trapping assays. Microbead assays have been improved in the past decades and are now important tools in routine and point-of-care diagnostics as well as in life science. Its advances include low costs, low workload, high speed and high-throughput automation. The potential of microbead-based assays therefore is apparent, and commercial applications can be found in the detection and discrimination of single nucleotide polymorphism, of pathogens, and in trapping assays. This review provides an overview on microbead-based platforms for biosensing with a main focus on nucleic acid detection (including amplification strategies and on selected probe systems using fluorescent labeling). Specific sections cover chemical properties of microbeads, the coupling of targets onto solid surfaces, microbead probe systems (mainly oligonucleotide probes), microbead detection schemes (with subsections on suspension arrays, microfluidic devices, and immobilized microbeads), quantification of nucleic acids, PCR in solution and the detection of amplicons, and methods for solid-phase amplification. We discuss selected trends such as microbead-coupled amplification, heterogeneous and homogenous DNA hybridization assays, real-time assays, melting curve analysis, and digital microbead assays. We finally discuss the relevance and trends of the methods in terms of high-level multiplexed analysis and their potential in diagnosis and personalized medicine. Contains 211 references. KW - Microbead KW - Microbead array KW - PCR KW - Microfluidic KW - Real-time KW - Multiplex PY - 2014 DO - https://doi.org/10.1007/s00604-014-1243-4 SN - 0026-3672 SN - 1436-5073 VL - 181 IS - 11-12 SP - 1151 EP - 1168 PB - Springer CY - Wien AN - OPUS4-31183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, C. A1 - Schierack, P. A1 - Gerber, U. A1 - Schröder, C. A1 - Choi, Youngeun A1 - Bald, Ilko A1 - Lehmann, W. A1 - Rödiger, S. T1 - Streptavidin Homologues for Applications on Solid Surfaces at High Temperatures N2 - One of the most commonly used bonds between two biomolecules is the bond between biotin and streptavidin (SA) or streptavidin homologues (SAHs). A high dissociation constant and the consequent high-temperature stability even allows for its use in nucleic acid detection under polymerase chain reaction (PCR) conditions. There are a number of SAHs available, and for assay design, it is of great interest to determine as to which SAH will perform the best under assay conditions. Although there are numerous single studies on the characterization of SAHs in solution or selected solid phases, there is no systematic study comparing different SAHs for biomolecule-binding, hybridization, and PCR assays on solid phases. We compared streptavidin, core streptavidin, traptavidin, core traptavidin, neutravidin, and monomeric streptavidin on the surface of microbeads (10–15 μm in diameter) and designed multiplex microbead-based experiments and analyzed simultaneously the binding of biotinylated oligonucleotides and the hybridization of oligonucleotides to complementary capture probes. We also bound comparably large DNA origamis to capture probes on the microbead surface. We used a real-time fluorescence microscopy imaging platform, with which it is possible to subject samples to a programmable time and temperature profile and to record binding processes on the microbead surface depending on the time and temperature. With the exception of core traptavidin and monomeric streptavidin, all other SA/SAHs were suitable for our investigations. We found hybridization efficiencies close to 100% for streptavidin, core streptavidin, traptavidin, and neutravidin. These could all be considered equally suitable for hybridization, PCR applications, and melting point analysis. The SA/SAH–biotin bond was temperature-sensitive when the oligonucleotide was mono-biotinylated, with traptavidin being the most stable followed by streptavidin and neutravidin. Mono-biotinylated oligonucleotides can be used in experiments with temperatures up to 70 °C. When oligonucleotides were bis-biotinylated, all SA/SAH–biotin bonds had similar temperature stability under PCR conditions, even if they comprised a streptavidin variant with slower biotin dissociation and increased mechanostability. KW - Biopolymers Probes KW - Hybridization KW - Fluorescence KW - Genetics PY - 2020 DO - https://doi.org/10.1021/acs.langmuir.9b02339 VL - 36 IS - 2 SP - 628 EP - 636 PB - American Chemical Society Publication CY - Washington AN - OPUS4-50357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ramirez, Alejandra A1 - Pauli, Jutta A1 - Crasselt, C. A1 - Simon, S. A1 - Schmidt, W. A1 - Resch-Genger, Ute T1 - The effect of a polycarboxylate ether on C3A / CaSO4.2H2O passivation monitored by optical spectroscopy N2 - Polycarboxylate ethers (PCEs) are widely used in construction, but the exact nature of their interaction with cement is still debated. Aiming at a better understanding of the role of tricalcium Aluminate (C3A) in cement hydration, we assessed the potential of optical spectroscopy in combination with a water-soluble fluorescent organic reporter dye (S0586) to monitor the early hydration of C3A in the presence of 26 wt% CaSO4.2H2O (C3A26G-S) with and without PCE. As optical methods, steady-state fluorescence and diffuse reflectance (UV–VisDR) spectroscopy were employed. Phase characterization and particle size distribution were performed with in-situ X-ray diffraction (in-situ XRD) and dynamic light scattering (DLS). Our results show that fluorescence and UV–VisDR spectroscopy can be used to monitor the formation of metastable phases by the disaggregation of the dye S0586 in a cement paste as well as changes in ettringite formation. Addition of PCE slowed down the disaggregation of the dye as reflected by the corresponding changes of the dyes absorption and fluorescence. This prolonged induction period is a well-known side effect of PCEs and agrees with previous reported calorimetric studies and the Inhibition of gypsum dissolution observed by in-situ XRD. This demonstrates that fluorescence and UV–VisDR spectroscopy together with a suitable optical probe can provide deeper insights into the influence of PCE on C3A-gypsum hydration which could be e.g., utilized as screening method for comparing the influences of different types of PCEs. KW - Fluorescence KW - Cement KW - Nano KW - Particle KW - Optical spectroscopy KW - PCE KW - XRD KW - Calorimetry KW - Monitoring KW - Diffuse KW - Reflection KW - Phase KW - Dye KW - Optical probe KW - Cyanine KW - Sensor KW - Method KW - Analysis PY - 2020 DO - https://doi.org/10.1016/j.conbuildmat.2020.121856 VL - 270 SP - 121856 PB - Elsevier Ltd. AN - OPUS4-52118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zakel, S. A1 - Schröder, Volkmar A1 - Askar, Enis A1 - Gabel, D. A1 - Hirsch, W. A1 - Kleinert, J. A1 - Krause, U. A1 - Krietsch, Arne A1 - Meistes, J. A1 - Sachtleben, A. A1 - Schmidt, Martin T1 - Sicherheitstechnische Kenngrößen des Explosionsschutzes von hybriden Stoffgemischen - Normungsfähige Bestimmungsverfahren N2 - In diesem Verbundvorhaben werden standardisierte Messverfahren für hybride Gemische erarbeitet, die der Bestimmung sicherheitstechnischer Kenngrößen des Explosionsschutzes dienen. Unter einem hybriden Gemisch wird dabei ein mehrphasiges System aus Brenngas oder brennbarem Dampf, sowie Luft und brennbarem Staub verstanden. Die Veröffentlichung der Ergebnisse erfolgt in einem Abschlussbericht und als DIN-Spezifikation (DIN SPEC). Diese DIN SPEC versetzt Prüfinstitute und Industrie in die Lage, Explosionsgefahren beim Betrieb technischer Anlagen mit hybriden Gemischen einzuschätzen und damit Prozesse sowohl sicherer als auch effizienter zu steuern. Dieses Projekt wird im Rahmen des WIPANOProgramms (Wissens- und Technologietransfer durch Patente und Normen) vom BMWi gefördert. T2 - 14. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit CY - Köthen, Germany DA - 07.11.2019 KW - Explosionsschutz KW - Sicherheitstechnische Kenngrößen KW - Hybride Gemische KW - Normung PY - 2019 SN - 978-3-89746-220-5 SP - 73 CY - Frankfurt am Main AN - OPUS4-49954 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Martin A1 - Wu, Dejian A1 - Zhao, P. A1 - Tan, X. A1 - Huang, W. A1 - Qianc, X. T1 - Minimum explosion concentrations of coal dusts with CH4/H2/CO below the gas lower explosion limit N2 - A 20-L spherical explosion chamber was used to investigate the explosion characteristics of dust clouds in air with the presence of flammable gas which is lower than its lower explosion limit (LEL). including minimum explosion concentration (MEC) of dust. Explosion pressure (Pex) and explosion pressure rise (dp/dt)ex). Two dust samples (anthracite coal, bituminous coal) and were three flammable gases (CH4, H2 and CO) were tested. Experimental results showed that the explosion of hybrid mixtures occurs when both dust and gas concentrations are lower than the LEL/MEC of the single substances. Meanwhile. all flammable gases with different volume fractions have distinct effects on the MEC. Pex and (dp/dt)ex of the dust samples. With the increase of the flammable gas concentration. either the Pex and (dp/dt)ex increase or the MEC decreases for all the hybrid mixtures of both two dust samples. At the same concentration of coal dusts. the addition of CH4 promotes higher explosion risks than the other two flammable gases. The distribution of (dp/dt)ex is quite different with the restricted area defined by empirical formulas. These results improve our understanding of the explosion behaviour and the explosion risk of hybrid dust-gas mixtures in air. KW - Dust explosions KW - Gas explosions KW - Minimum explosible concentration KW - Lower explosion limit KW - Hybrid mixtures PY - 2020 DO - https://doi.org/10.1016/j.fuel.2019.116401 SN - 0032-5910 VL - 260 SP - UNSP 116401 PB - Elsevier Sci. Ltd. AN - OPUS4-49956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulz, K. A1 - Schmack, R. A1 - Klemm, H. W. A1 - Kabelitz, Anke A1 - Schmidt, T. A1 - Emmerling, Franziska A1 - Kraehnert, R. T1 - Mechanism and kinetics of hematite crystallization in air: Linking bulk and surface models via mesoporous films with defined nanostructure N2 - Iron can form numerous oxides, hydroxides, and oxide−hydroxides. Despite their relevance, many of the transformation processes between these phases are still poorly understood. In particular the crystallization of quasi-amorphous hydroxides and oxide−hydroxides is difficult to assess, since typical diffraction and scattering methods provide only sampleaveraged information about the crystallized phases. We report a new approach for the investigation of the crystallization of oxide−hydroxides. The approach relies on model-type films that comprise a defined homogeneous nanostructure. The nanostructure allows quantitative linking of Information obtained by bulk-averaging diffraction techniques (XRD, SAXS) with locally resolved information, i.e., Domain sizes (SEM, TEM, LEEM) and phase composition (SAED). Using time-resolved imaging and diffraction we deduce mechanism and kinetics for the crystallization of ferrihydrite into hematite. Hematite forms via nucleation of hematite domains and subsequent Domain growth that terminates only upon complete transformation. A Johnson−Mehl−Avrami−Kolmogorov model describes the kinetics over a wide temperature range. The derived understanding enables the first synthesis of ferrihydrite films with ordered mesoporosity and quantitative control over the films’ hematite and ferrihydrite content. KW - Iron oxide KW - Crystallization KW - Mesoporous films KW - Nanostructure PY - 2017 DO - https://doi.org/10.1021/acs.chemmater.6b05185 SN - 0897-4756 SN - 1520-5002 VL - 29 IS - 4 SP - 1724 EP - 1734 AN - OPUS4-39690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprachmann, J. A1 - Wachsmuth, T. A1 - Bhosale, M. A1 - Burmeister, D. A1 - Smales, Glen Jacob A1 - Schmidt, M. A1 - Kochovski, Z. A1 - Grabicki, N. A1 - Wessling, R. A1 - List-Kratochvil, E. J. W. A1 - Esser, B. A1 - Dumele, O. T1 - Antiaromatic Covalent Organic Frameworks Based on Dibenzopentalenes N2 - Despite their inherent instability, 4n π systems have recently received significant attention due to their unique optical and electronic properties. In dibenzopentalene (DBP), benzanellation stabilizes the highly antiaromatic pentalene core, without compromising its amphoteric redox behavior or small HOMO−LUMO energy gap. However, incorporating such molecules in organic devices as discrete small molecules or amorphous polymers can limit the performance (e.g., due to solubility in the battery electrolyte solution or low internal surface area). Covalent organic frameworks (COFs), on the contrary, are highly ordered, porous, and crystalline materials that can provide a platform to align molecules with specific properties in a well-defined, ordered environment. We synthesized the first antiaromatic framework materials and obtained a series of three highly crystalline and porous COFs based on DBP. Potential applications of such antiaromatic bulk materials were explored: COF films show a conductivity of 4 × 10−8 S cm−1 upon doping and exhibit photoconductivity upon irradiation with visible light. Application as positive electrode materials in Li-organic batteries demonstrates a significant enhancement of performance when the antiaromaticity of the DBP unit in the COF is exploited in its redox activity with a discharge capacity of 26 mA h g−1 at a potential of 3.9 V vs. Li/Li+ . This work showcases antiaromaticity as a new design principle for functional framework materials. KW - SAXS KW - MOUSE KW - Covalent Organic Frameworks KW - Batteries PY - 2023 DO - https://doi.org/10.1021/jacs.2c10501 SP - 1 EP - 12 PB - ACS Publications AN - OPUS4-56958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -