TY - JOUR A1 - Beutin, B. A1 - Felix, F. W. A1 - Meier, Klaus T1 - A modified Bridgman furnace for growing crystals of alpha-CsCI JF - Journal of crystal growth PY - 1974 SN - 0022-0248 SN - 1873-5002 VL - 23 SP - 353 EP - 355 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-7967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Felix, F. W. A1 - Meier, Klaus A1 - Müller, Maike T1 - Reaktionskinetische Untersuchungen an neutronenbestrahlten Alkalihalogenid-Einkristallen JF - Zeitschrift für Naturforschung A PY - 1974 SN - 0044-3166 VL - 29 SP - 1299 EP - 1305 PB - Verl. d. Zeitschrift für Naturforschung CY - Tübingen AN - OPUS4-7968 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kind, L. A1 - Plamper, F.A. A1 - Göbel, R. A1 - Mantion, Alexandre A1 - Müller, A. H. E. A1 - Pieles, U. A1 - Taubert, A. A1 - Meier, W. T1 - Silsesquioxane/polyamine nanoparticle-templated formation of star- or raspberry-like silica nanoparticles JF - Langmuir KW - Silica nanoparticles KW - 3D TEM KW - Star-shaped nanoparticles KW - Raspberry-shaped nanoparticles PY - 2009 DO - https://doi.org/10.1021/la900229n SN - 0743-7463 SN - 1520-5827 VL - 25 IS - 12 SP - 7109 EP - 7115 PB - American Chemical Society CY - Washington, DC AN - OPUS4-19580 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - De Bruyn Ouboter, D. A1 - Schuster, T.B. A1 - Mantion, Alexandre A1 - Meier, W. T1 - Hierarchical organization of purely peptidic amphiphiles into peptide beads JF - The journal of physical chemistry / C N2 - A broad range of new properties is emerging from supramolecular aggregates as they pass beyond the limitations of simple molecules. Self-assembled structures of purely peptidic amphiphiles may exploit such properties to produce biocompatible, smart materials for drug administration. In aqueous media, the solid-phase derived amphiphilic undecapeptide described herein (Ac-X3-gT) forms self-assembled particles of spherical shape with diameters between 200 and 1500 nm, termed 'peptide beads'. The beads result from hierarchical organization of micellar-like structures, a fact determined by a combination of investigations carried out by electron and atomic force microscopy (AFM), static and dynamic light scattering, and small-angle X-ray scattering. These highly ordered structures agree with the concept of multicompartmentization and represent the first example of supramicellar assemblies based purely on peptides. New structural insights, as presented here, allow a better understanding of the beads' capacity to embed hydrophobic and hydrophilic payloads and therefore provide new perspectives for drug delivery applications that may result from this new class of material. KW - Peptide beads KW - Spherical peptide particles KW - Hierarchical self-assembly KW - Multicompartment micelles KW - Purely peptidic amphiphiles PY - 2011 DO - https://doi.org/10.1021/jp203048h SN - 1932-7447 SN - 1089-5639 VL - 115 IS - 30 SP - 14583 EP - 14590 PB - Soc. CY - Washington, DC AN - OPUS4-24212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Graf, P. A1 - Mantion, Alexandre A1 - Haase, A. A1 - Thünemann, Andreas A1 - Masic, A. A1 - Meier, W. A1 - Luch, A. A1 - Taubert, A. T1 - Silicification of peptide-coated silver nanoparticles - a biomimetic soft chemistry approach toward chiral hybrid core-shell materials JF - ACS nano N2 - Silica and silver nanoparticles are relevant materials for new applications in optics, medicine, and analytical chemistry. We have previously reported the synthesis of pH responsive, peptide-templated, chiral silver nanoparticles. The current report shows that peptide-stabilized nanoparticles can easily be coated with a silica shell by exploiting the ability of the peptide coating to hydrolyze silica precursors such as TEOS or TMOS. The resulting silica layer protects the nanoparticles from chemical etching, allows their inclusion in other materials, and renders them biocompatible. Using electron and atomic force microscopy, we show that the silica shell thickness and the particle aggregation can be controlled simply by the reaction time. Small-angle X ray scattering confirms the Ag/peptide@silica core–shell structure. UV–vis and circular dichroism spectroscopy prove the conservation of the silver nanoparticle chirality upon silicification. Biological tests show that the biocompatibility in simple bacterial systems is significantly improved once a silica layer is deposited on the silver particles. KW - Peptide-templated materials KW - Silver nanoparticles KW - Chiral nanoparticles KW - Ag/peptide@SiO2 nanostructures KW - Core-shell structures PY - 2011 DO - https://doi.org/10.1021/nn102969p SN - 1936-0851 VL - 5 IS - 2 SP - 820 EP - 833 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-23207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haase, A. A1 - Arlinghaus, H. F. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Graf, P. A1 - Mantion, Alexandre A1 - Draude, F. A1 - Galla, S. A1 - Plendl, J. A1 - Goetz, M.E. A1 - Masic, A. A1 - Meier, W. A1 - Thünemann, Andreas A1 - Taubert, A. A1 - Luch, A. T1 - Application of laser postionization secondary neutral mass spectrometry / time-of-flight secondary ion mass spectrometry in nanotoxicology: Visualization of nanosilver in human macrophages and cellular responses JF - ACS nano N2 - Silver nanoparticles (SNP) are the subject of worldwide commercialization because of their antimicrobial effects. Yet only little data on their mode of action exist. Further, only few techniques allow for visualization and quantification of unlabeled nanoparticles inside cells. To study SNP of different sizes and coatings within human macrophages, we introduce a novel laser postionization secondary neutral mass spectrometry (Laser-SNMS) approach and prove this method superior to the widely applied confocal Raman and transmission electron microscopy. With time-of-flight secondary ion mass spectrometry (TOF-SIMS) we further demonstrate characteristic fingerprints in the lipid pattern of the cellular membrane indicative of oxidative stress and membrane fluidity changes. Increases of protein carbonyl and heme oxygenase-1 levels in treated cells confirm the presence of oxidative stress biochemically. Intriguingly, affected phagocytosis reveals as highly sensitive end point of SNP-mediated adversity in macrophages. The cellular responses monitored are hierarchically linked, but follow individual kinetics and are partially reversible. KW - Nanosilver KW - Laser-SNMS KW - TOF-SIMS KW - Confocal Raman microscopy KW - Oxidative stress KW - Protein carbonyls PY - 2011 DO - https://doi.org/10.1021/nn200163w SN - 1936-0851 VL - 5 IS - 4 SP - 3059 EP - 3068 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-23656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nehring, R. A1 - Palivan, C.G. A1 - Moreno-Flores, S. A1 - Mantion, Alexandre A1 - Tanner, P. A1 - Toca-Herrera, J.L. A1 - Thünemann, Andreas A1 - Meier, W. T1 - Protein decorated membranes by specific molecular interactions JF - Soft matter N2 - Here we characterize new metal-functionalized amphiphilic diblock copolymers, developed for both surface and solution molecular recognition applications. Polybutadiene-block-poly(ethylene oxide) copolymers functionalized with nitrilotriacetic acid and tris(nitrilotriacetic acid) were complexed with nickel(II) to obtain coordination sites for oligohistidine residues of model proteins. Mixtures of functionalized polymers with the respective non-functionalized block copolymers self-assemble in aqueous solution into vesicular structures with a controlled density of the metal end-groups on their surface. In solution, binding of His6-tagged green fluorescent protein (EGFP) and red fluorescent protein (RFP) to the vesicle surface was quantified by fluorescence correlation spectroscopy. Small-angle X-ray scattering indicates an increase of the membrane thickness by 2-3 nm upon protein binding. Block copolymer monolayers at the air-water interface and on solid support served as a model system to characterize the protein-decorated membranes by Brewster angle microscopy and AFM. High resolution AFM of solid-supported, hydrated monolayers indicates that the proteins form densely packed and partially ordered arrays with the cylindrically shaped EGFP molecules lying flat on the surface of the films. KW - Amphiphilic copolymer KW - Metal centers KW - His-tag proteins KW - Molecular recognition PY - 2010 DO - https://doi.org/10.1039/c002838j SN - 1744-683X VL - 6 SP - 2815 EP - 2824 PB - RSC Publ. CY - Cambridge AN - OPUS4-21564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haase, A. A1 - Mantion, Alexandre A1 - Graf, P. A1 - Plendl, J. A1 - Thünemann, Andreas A1 - Meier, W. A1 - Taubert, A. A1 - Luch, A. T1 - A novel type of silver nanoparticles and their advantages in toxicity testing in cell culture systems JF - Archives of toxicology N2 - Silver nanoparticles (SNPs) are among the most commercialized nanoparticles worldwide. Often SNP are used because of their antibacterial properties. Besides that they possess unique optic and catalytic features, making them highly interesting for the creation of novel and advanced functional materials. Despite its widespread use only little data exist in terms of possible adverse effects of SNP on human health. Conventional synthesis routes usually yield products of varying quality and property. It thus may become puzzling to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles applied. Here, we applied a novel synthesis approach to obtain SNP of well-defined colloidal and structural properties. Being stabilized by a covalently linked small peptide, these particles are nicely homogenous, with narrow size distribution, and form monodisperse suspensions in aqueous solutions. We applied these peptide- coated SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP- 1-derived human macrophages while being exposed against these particles. Gold nanoparticles of similar size and coating (Au20Pep) were used for comparison. The cytotoxicity of particles was assessed by WST-1 and LDH assays, and the uptake into the cells was confirmed via transmission electron microscopy. In summary, our data demonstrate that this novel type of SNP is well suited to serve as model system for nanoparticles to be tested in toxicological studies in vitro. KW - Silver nanoparticles KW - Peptide coating KW - Nanotoxicity PY - 2012 DO - https://doi.org/10.1007/s00204-012-0836-0 SN - 0340-5761 SN - 1432-0738 VL - 86 IS - 7 SP - 1089 EP - 1098 PB - Springer CY - Berlin ; Heidelberg [u.a.] AN - OPUS4-26269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Casse, O. A1 - Shkilnyy, A. A1 - Linders, J. A1 - Mayer, C. A1 - Häussinger, D. A1 - Völkel, A. A1 - Thünemann, Andreas A1 - Dimova, R. A1 - Cölfen, H. A1 - Meier, W. A1 - Schlaad, H. A1 - Taubert, A. T1 - Solution behavior of double-hydrophilic block copolymers in dilute aqueous solution JF - Macromolecules N2 - The self-assembly of double-hydrophilic poly(ethylene oxide)–poly(2-methyl-2-oxazoline) diblock copolymers in water has been studied. Isothermal titration calorimetry, small-angle X-ray scattering, and analytical ultracentrifugation suggest that only single polymer chains are present in solution. In contrast, light scattering and transmission electron microscopy detect aggregates with radii of ca. 100 nm. Pulsed field gradient NMR spectroscopy confirms the presence of aggregates, although only 2% of the polymer chains undergo aggregation. Water uptake experiments indicate differences in the hydrophilicity of the two blocks, which is believed to be the origin of the unexpected aggregation behavior (in accordance with an earlier study by Ke et al. [Macromolecules2009, 42, 5339–5344]). The data therefore suggest that even in double-hydrophilic block copolymers, differences in hydrophilicity are sufficient to drive polymer aggregation, a phenomenon that has largely been overlooked or ignored so far. KW - Nanotechnology KW - Small-angle X-ray scatering KW - SAXS PY - 2012 DO - https://doi.org/10.1021/ma300621g SN - 0024-9297 SN - 1520-5835 VL - 45 IS - 11 SP - 4772 EP - 4777 PB - American Chemical Society CY - Washington, DC AN - OPUS4-26072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mantion, Alexandre A1 - Graf, P. A1 - Florea, I. A1 - Haase, A. A1 - Thünemann, Andreas A1 - Masic, A. A1 - Ersen, O. A1 - Rabu, P. A1 - Meier, W. A1 - Luch, A. A1 - Taubert, A. T1 - Biomimetic synthesis of chiral erbium-doped silver/peptide/silica core-shell nanoparticles (ESPN) JF - Nanoscale N2 - Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er2O3 particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell. KW - Nanoparticle KW - Small-angle X-ray scattering KW - SAXS PY - 2011 DO - https://doi.org/10.1039/c1nr10930h SN - 2040-3364 SN - 2040-3372 VL - 3 IS - 12 SP - 5168 EP - 5179 PB - RSC Publ. CY - Cambridge AN - OPUS4-25422 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Lorenz, Edelgard A1 - Weimann, Christiane A1 - Sturm, Heinz A1 - Karimov, I. A1 - Ettl, J. A1 - Meier, R. A1 - Wohlgemuth, W. A. A1 - Berger, H. A1 - Wildgruber, M. T1 - Mechanic and surface properties of central-venous port catheters after removal: A comparison of polyurethane and Silicon rubber materials JF - Journal of the Mechanical Behavior of Biomedical Materials N2 - Central venous port devices made of two different polymeric materials, thermoplastic polyurethane (TPU)and silicone rubber (SiR), were compared due their material properties. Both naïve catheters as well as catheters after removal from patients were investigated. In lab experiments the influence of various chemo-therapeutic solutions on material properties was investigated, where as the samples after removal were compared according to the implanted time inpatient. The macroscopic,mechanical performance was assessed with dynamic, specially adapted tests for elasticity. The degradation status of the materials was determined with common tools of polymer characterisation, such as infrared spectroscopy, molecular weight measurements and various methods of thermal analysis. The surface morphology was an alysed using scanning electron microscopy. A correlation between material properties and clinical performance was proposed. The surface morphology and chemical composition of the polyurethane catheter materials can potentially result in increased susceptibility of the catheter to bloodstream infections and thrombotic complications. The higher mechanic failure,especially with increasing implantation time of the silicone catheters is related to the lower mechanical performance compared to the polyurethane material as well as loss of barium sulphate filler particles near the surface of the catheter. This results in preformed microscopic notches, which act as predetermined sites of fracture. KW - Thermoplastic polyurethane (TPU) KW - Silicone rubber (SiR) KW - Catheters KW - Central venous access port KW - Complication KW - Structure propertyrelationship KW - Mechanical testing PY - 2016 DO - https://doi.org/10.1016/j.jmbbm.2016.08.002 SN - 1751-6161 SN - 1878-0180 VL - 64 SP - 281 EP - 291 PB - Elsevier Ltd. AN - OPUS4-37178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haase, A. A1 - Rott, S. A1 - Mantion, Alexandre A1 - Graf, P. A1 - Plendl, J. A1 - Thünemann, Andreas A1 - Meier, W.P. A1 - Taubert, A. A1 - Luch, A. A1 - Reiser, G T1 - Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses JF - Toxicological sciences N2 - In the body, nanoparticles can be systemically distributed and then may affect secondary target organs, such as the central nervous system (CNS). Putative adverse effects on the CNS are rarely investigated to date. Here, we used a mixed primary cell model consisting mainly of neurons and astrocytes and a minor proportion of oligodendrocytes to analyze the effects of well-characterized 20 and 40 nm silver nanoparticles (SNP). Similar gold nanoparticles served as control and proved inert for all endpoints tested. SNP induced a strong size-dependent cytotoxicity. Additionally, in the low concentration range (up to 10 µg/ml of SNP), the further differentiated cultures were more sensitive to SNP treatment. For detailed studies, we used low/medium dose concentrations (up to 20 µg/ml) and found strong oxidative stress responses. Reactive oxygen species (ROS) were detected along with the formation of protein carbonyls and the induction of heme oxygenase-1. We observed an acute calcium response, which clearly preceded oxidative stress responses. ROS formation was reduced by antioxidants, whereas the calcium response could not be alleviated by antioxidants. Finally, we looked into the responses of neurons and astrocytes separately. Astrocytes were much more vulnerable to SNP treatment compared with neurons. Consistently, SNP were mainly taken up by astrocytes and not by neurons. Immunofluorescence studies of mixed cell cultures indicated stronger effects on astrocyte morphology. Altogether, we can demonstrate strong effects of SNP associated with calcium dysregulation and ROS formation in primary neural cells, which were detectable already at moderate dosages. KW - Silver nanoparticles KW - Neurons KW - Oxidative stress KW - Protein carbonyls KW - Calcium KW - Reference material KW - Nanoparticle KW - Small-angle X-ray scattering KW - SAXS PY - 2012 DO - https://doi.org/10.1093/toxsci/kfs003 SN - 1096-6080 SN - 1096-0929 VL - 126 IS - 2 SP - 457 EP - 468 PB - Oxford University Press CY - Oxford AN - OPUS4-25633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -