TY - JOUR A1 - Westwood, S. A1 - Martos, G. A1 - Josephs, R. A1 - Choteau, T. A1 - Wielgosz, R. A1 - Davies, S. A1 - Moawad, M. A1 - Tarrant, G. A1 - Chan, B. A1 - Alamgir, M. A1 - de Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - de Sena, R. A1 - Oliveira, R. A1 - Melanson, J. A1 - Bates, J. A1 - Mai Le, P. A1 - Meija, J. A1 - Quan, C. A1 - Huang, T. A1 - Zhang, W. A1 - Ma, R. A1 - Zhang, S. A1 - Hao, Y. A1 - He, Y. A1 - Song, S. A1 - Wang, H. A1 - Su, F. A1 - Zhang, T. A1 - Li, H. A1 - Lam, W. A1 - Wong, W. A1 - Fung, W. A1 - Philipp, Rosemarie A1 - Dorgerloh, Ute A1 - Meyer, Klas A1 - Piechotta, Christian A1 - Riedel, Juliane A1 - Westphalen, Tanja A1 - Giannikopoulou, P. A1 - Alexopoulos, Ch. A1 - Kakoulides, E. A1 - Kitamaki, Y. A1 - Yamazaki, T. A1 - Shimizu, Y. A1 - Kuroe, M. A1 - Numata, M. A1 - Pérez-Castorena, A. A1 - Balderas-Escamilla, M. A1 - Garcia-Escalante, J. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Beliakov, M. A1 - Palagina, M. A1 - Tkachenko, I. A1 - Spirin, S. A1 - Smirnov, V. A1 - Tang Lin, T. A1 - Pui Sze, C. A1 - Juan, W. A1 - Lingkai, W. A1 - Ting, L. A1 - Quinde, L. A1 - Yizhao, C. A1 - Lay Peng, S. A1 - Fernandes-Whaley, M. A1 - Prevoo-Franzsen, D. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Mkhize, D. A1 - Marajh, D. A1 - Chamane, S. A1 - Ahn, S. A1 - Choi, K. A1 - Lee, S. A1 - Han, J. A1 - Baek, S. A1 - Kim, B. A1 - Marbumrung, S. A1 - Jongmesuk, P. A1 - Shearman, K. A1 - Boonyakong, C. A1 - Bilsel, M. A1 - Gündüz, S. A1 - Ün, I. A1 - Yilmaz, H. A1 - Bilsel, G. A1 - Gökçen, T. A1 - Clarkson, C. A1 - Warren, J. A1 - Achtar, E. T1 - Mass fraction assignment of Bisphenol-A high purity material N2 - The CCQM-K148.a comparison was coordinated by the BIPM on behalf of the CCQM Organic Analysis Working Group for NMIs and DIs which provide measurement services in organic analysis under the CIPM MRA. It was undertaken as a "Track A" comparison within the OAWG strategic plan. CCQM-K148.a demonstrates capabilities for assigning the mass fraction content of a solid organic compound having moderate molecular complexity, where the compound has a molar mass in the range (75 - 500) g/mol and is non-polar (pKow < −2), when present as the primary organic component in a neat organic solid and where the mass fraction content of the primary component in the material is in excess of 950 mg/g. Participants were required to report the mass fraction of Bisphenol A present in one supplied unit of the comparison material. Participants using a mass balance method for the assignment were also required to report their assignments of the impurity components present in the material. Methods used by the seventeen participating NMIs or DIs were predominantly based on either stand-alone mass balance (summation of impurities) or qNMR approaches, or the combination of data obtained using both methods. The results obtained using thermal methods based on freezing-point depression methods were also reported by a limited number of participants. There was excellent agreement between assignments obtained using all three approaches to assign the BPA content. The assignment of the values for the mass fraction content of BPA consistent with the KCRV was achieved by most of the comparison participants with an associated relative standard uncertainty in the assigned value in the range (0.1 - 0.5)%. KW - Bisphenol-A KW - Purity assessment KW - Interlaboratory key comparison KW - Metrology PY - 2021 DO - https://doi.org/10.1088/0026-1394/58/1A/08015 VL - 58 IS - 1A SP - 08015 PB - IOP Publishing AN - OPUS4-54188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Josephs, R. A1 - Choteau, T. A1 - Daireaux, A. A1 - Stoppacher, N. A1 - Wielgosz, R. A1 - Davies, S. A1 - do Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - Lima, J. A1 - Oliveira, R. A1 - de Sena, R. A1 - Windust, A. A1 - Huang, T. A1 - Dai, X. A1 - Quan, C. A1 - He, H. A1 - Zhang, W. A1 - Wei, C. A1 - Li, N. A1 - Gao, D. A1 - Liu, Z. A1 - Lo, M. A1 - Wong, W. A1 - Pfeifer, Dietmar A1 - Koch, Matthias A1 - Dorgerloh, Ute A1 - Rothe, Robert A1 - Philipp, Rosemarie A1 - Hanari, N. A1 - Rezali, M. A1 - Arzate, C. A1 - Berenice, M. A1 - Caballero, V. A1 - Osuna, M. A1 - Krylov, A. A1 - Kharitonov, S. A1 - Lopushanskaya, E. A1 - Liu, Q. A1 - Lin, T. A1 - Fernandes-Whaley, M. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Prevoo-Franzsen, D. A1 - Archer, M. A1 - Kim, B. A1 - Baek, S. A1 - Lee, S. A1 - Lee, J. A1 - Marbumrung, S. A1 - Kankaew, P. A1 - Chaorenpornpukdee, K. A1 - Chaipet, T. A1 - Shearman, K. A1 - Gören, A. A1 - Gündüz, S. A1 - Yilmaz, H. A1 - Un, I. A1 - Bilsel, G. A1 - Clarkson, C. A1 - Bedner, M. A1 - Camara, J. A1 - Lang, B. A1 - Lippa, K. A1 - Nelson, M. A1 - Toman, B. A1 - Yu, L. T1 - Mass fraction assignment of folic acid in a high purity material - CCQM-K55.d (Folic acid) Final Report N2 - The comparison required the assignment of the mass fraction of folic acid present as the main component in the comparison sample. Performance in the comparison is representative of a laboratory's measurement capability for the purity assignment of organic compounds of medium structural complexity [molecular weight range 300–500] and high polarity (pKOW < −2). Methods used by the eighteen participating NMIs or DIs were based on a mass balance (summation of impurities) or qNMR approach, or the combination of data obtained using both methods. The qNMR results tended to give slightly lower values for the content of folic acid, albeit with larger associated uncertainties, compared with the results obtained by mass balance procedures. Possible reasons for this divergence are discussed in the report, without reaching a definitive conclusion as to their origin. The comparison demonstrates that for a structurally complex polar organic compound containing a high water content and presenting a number of additional analytical challenges, the assignment of the mass fraction content property value of the main component can reasonably be achieved with an associated relative standard uncertainty in the assigned value of 0.5% KW - CCQM key comparison KW - Purity assessment KW - Folic acid PY - 2018 UR - https://www.bipm.org/utils/common/pdf/final_reports/QM/K55/CCQM-K55.d.pdf DO - https://doi.org/10.1088/0026-1394/55/1A/08013 VL - 55 IS - Technical Supplement, 2018 SP - 08013, 1 EP - 38 PB - Institute of Physics Publishing (IOP) ; Bureau International des Poids et Mesures AN - OPUS4-44999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Josephs, R. A1 - Choteau, T. A1 - Daireaux, A. A1 - Wielgosz, R. A1 - Davies, S. A1 - Moad, M. A1 - Chan, B. A1 - Munoz, A. A1 - Conneely, P. A1 - Ricci, M. A1 - Do Rego, E.C.P. A1 - Garrido, B.C. A1 - Violante, F.G.M. A1 - Windust, A. A1 - Dai, X. A1 - Huang, T. A1 - Zhang, W. A1 - Su, F. A1 - Quan, C. A1 - Wang, H. A1 - Lo, M. A1 - Wong, W. A1 - Gantois, F. A1 - Lalerle, B. A1 - Dorgerloh, Ute A1 - Koch, Matthias A1 - Klyk-Seitz, Urszula-Anna A1 - Pfeifer, Dietmar A1 - Philipp, Rosemarie A1 - Piechotta, Christian A1 - Recknagel, Sebastian A1 - Rothe, Robert A1 - Yamazaki, T. A1 - Zakaria, O. B. A1 - Castro, E. A1 - Balderas, M. A1 - González, N. A1 - Salazar, C. A1 - Regalado, L. A1 - Valle, E. A1 - Rodríguez, L. A1 - Laguna, L.Á.. A1 - Ramírez, P. A1 - Avila, M. A1 - Ibarra, J. A1 - Valle, L. A1 - Arce, M. A1 - Mitani, Y. A1 - Konopelko, L. A1 - Krylov, A. A1 - Lopushanskaya, E. A1 - Lin, T.T. A1 - Liu, Q. A1 - Kooi, L.T. A1 - Fernandes-Whaley, M. A1 - Prevoo-Franzsen, D. A1 - Nhlapo, N. A1 - Visser, R. A1 - Kim, B. A1 - Lee, H. A1 - Kankaew, P. A1 - Pookrod, P. A1 - Sudsiri, N. A1 - Shearman, K. A1 - Gören, A.C. A1 - Bilsel, G. A1 - Yilmaz, H. A1 - Bilsel, M. A1 - Cergel, M. A1 - Coskun, F.G. A1 - Uysal, E. A1 - Gündüz, S. A1 - Ün, I. A1 - Warren, J. A1 - Bearden, D.W. A1 - Bedner, M. A1 - Duewer, D.L. A1 - Lang, B.E. A1 - Lippa, K.A. A1 - Schantz, M.M. A1 - Sieber, J.R. T1 - Final report on key comparison CCQM-K55.c (L-(+)-Valine): Characterization of organic substances for chemical purity N2 - KEY COMPARISON Under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM K55.c, was coordinated by the Bureau International des Poids et Mesures (BIPM) in 2012. Twenty National Measurement Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of valine present as the main component in the comparison sample for CCQM-K55.c. The comparison samples were prepared from analytical grade L-valine purchased from a commercial supplier and used as provided without further treatment or purification. Valine was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of organic compounds of low structural complexity [molecular weight range 100–300] and high polarity (pKOW > –2). The KCRV for the valine content of the material was 992.0 mg/g with a combined standard uncertainty of 0.3 mg/g. The key comparison reference value (KCRV) was assigned by combination of KCRVs assigned from participant results for each orthogonal impurity class. The relative expanded uncertainties reported by laboratories having results consistent with the KCRV ranged from 1 mg/g to 6 mg/g when using mass balance based approaches alone, 2 mg/g to 7 mg/g using quantitative 1H NMR (qNMR) based approaches and from 1 mg/g to 2.5 mg/g when a result obtained by a mass balance method was combined with a separate qNMR result. The material provided several analytical challenges. In addition to the need to identify and quantify various related amino acid impurities including leucine, isoleucine, alanine and a-amino butyrate, care was required to select appropriate conditions for performing Karl Fischer titration assay for water content to avoid bias due to in situ formation of water by self-condensation under the assay conditions. It also proved to be a challenging compound for purity assignment by qNMR techniques. There was overall excellent agreement between participants in the identification and the quantification of the total and individual related structure impurities, water content, residual solvent and total non-volatile content of the sample. Appropriate technical justifications were developed to rationalise observed discrepancies in the limited cases where methodology differences led to inconsistent results. The comparison demonstrated that to perform a qNMR purity assignment the selection of appropriate parameters and an understanding of their potential influence on the assigned value is critical for reliable implementation of the method, particularly when one or more of the peaks to be quantified consist of complex multiplet signals. PY - 2014 DO - https://doi.org/10.1088/0026-1394/51/1A/08010 SN - 0026-1394 SN - 1681-7575 VL - 51 SP - 08010, 1 EP - 44 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-31072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Dejian A1 - Schmidt, Martin A1 - Huang, W. A1 - Wei, A. A1 - Krause, U. A1 - Wu, W. T1 - Inhibition effect of N2/CO2 blends on the minimum explosion concentration of agriculture and coal dusts N2 - Minimum explosion concentration (MEC) of three agriculture dusts and two coal dusts was studied via a 20-L explosion chamber to reveal the role of gaseous inhibitors. Both active method (CO2 diluting air) and passive method (CO2 replacing O2) were used. The TG and DTG thermal analysis tests were conducted to study the pyrolysis and combustion characteristics of dust samples. An alternative explosion criterion based on combustion duration time was used to determine MEC, and compared with the standardized overpressure method. Under 10-kJ ignition condition, as oxygen mole fraction (XO2) decreased from 21% to 10%, MEC of agriculture dusts and coal dusts respectively increased by around 5 times and 2 times. The active inerting method with a lower N2/CO2 ratio was found to have a better suppression effect on the explosion of the five carbonaceous dusts because the blend has a higher specific heat and a lower oxygen diffusion rate. KW - CO2/N2 ratio KW - Explosion criterion KW - Combustion kinetics KW - Inerting effect KW - Explosion characteristics PY - 2022 DO - https://doi.org/10.1016/j.powtec.2022.117195 SN - 0032-5910 VL - 399 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-55013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, W. A1 - Wei, A. A1 - Huang, W. A1 - Zhao, Peng A1 - Schmidt, Martin A1 - Krause, Ulrich A1 - Wu, Dejian T1 - Experimental and theoretical study on the inhibition effect of CO2/N2 blends on the ignition behavior of carbonaceous dust clouds N2 - Gaseous inhibitors are used in many industries for the explosion prevention of combustible dusts, mitigating the potential hazard to humans, properties and environments. This work experimentally and theoretically studied the inerting effect of gaseous inhibitors on the ignition process of dust clouds in O2/N2/CO2 atmospheres, with an emphasis on the role of the CO2/N2 ratio. 10 different combustible carbonaceous dusts were selected, including grain dust, biomass dust and coal dust. Experimental results showed that the inhibition effect of CO2/N2 is closely related to the ignition mechanism of dust clouds. Specifically, a higher ratio of CO2/N2 yields a stronger inhibition effect on the ignition process of dust samples with relatively low volatile matter contents predominated by heterogeneous ignition. In addition, two novel steady-state ignition mechanism models were developed to interpret the experimental observations. Maxwell-Stefan equations were used to describe the diffusivity in the ternary O2/N2/CO2 gas mixtures. The analytical results were in good agreement with the experimental data of the minimum ignition temperature of dust cloud (MITC) in oxygen-lean atmospheres. The mechanism modelling can be used to estimate the critical ignition temperature of all carbonaceous dust clouds with a wide range of volatile matter content under different inert atmospheres, which will provide a reference for the explosion hazard assessment of dust posed by a hot surface in the process industries. KW - CO2/N2 ratio KW - Inerting effect KW - Volatile matter content KW - MITC KW - Mechanism model PY - 2021 DO - https://doi.org/10.1016/j.psep.2021.07.005 SN - 0957-5820 VL - 153 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-53662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dai, X. A1 - Zhang, W. A1 - Li, H. A1 - Huang, T. A1 - Li, M. A1 - Quan, C. A1 - Zhang, Q. A1 - Davies, S. R. A1 - Warren, J. A1 - Lo, M.-F. A1 - Kakoulides, E. A1 - Gören, A. C. A1 - Marbumrung, S. A1 - Pfeifer, Dietmar A1 - Ün, I. A1 - Gündüz, S. A1 - Yilmaz, H. A1 - Kankaew, P. A1 - Sudsiri, N. A1 - Shearman, K. A1 - Pookrod, P. A1 - Polzer, J. A1 - Radeck, W. T1 - CCQM-K104 key comparison (avermectin B(1)a) on the characterization of organic substances for chemical purity N2 - Under the Comité Consultatif pour la Quantité de Matière (CCQM), a key comparison, CCQM-K104, was coordinated by the National Institute of Metrology (NIM). The comparison was designed to demonstrate a laboratory's performance in determining the mass fraction of the main component in a complex high purity organic material. Nine NMIs or DIs participated in the comparison. Eight participants reported their results. An additional impurity was resolved from the avermectin B1a peak and was tentatively identified as an unknown impurity by NMIA (National Measurement Institute (Australia)). It was subsequently identified by NIM as a diastereoisomer of avermectin B1a at the C-26 position. Final reference value (KCRV) = 924.63 mg/g, with uncertainty (k=1) = 3.89 mg/g, and expanded uncertainty = 8.97 mg/g. The degrees of equivalence with the avermectin B1a KCRV for each participant were reported. The measurement results and degrees of equivalence should be indicative of the performance of a laboratory's measurement capability for the purity assignment of organic compounds of high structural complexity (relative molecular mass range of 500 Da -1000 Da and low polarity (-log KOW ≤ -2). KW - NMR KW - Key comparision KW - CCQM PY - 2017 DO - https://doi.org/10.1088/0026-1394/54/1A/08019 SN - 0026-1394 VL - 54 SP - 2 EP - 32 AN - OPUS4-45381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Dai, X. A1 - Zhang, W. A1 - Li, H. A1 - Huang, T. A1 - Li, M. A1 - Quan, C. A1 - Zhang, Q. A1 - Davies, S. R A1 - Warren, J. A1 - Lo, M.-F. A1 - Kakoulides, E. A1 - Ceyhan Gören, A. A1 - Marbumrung, S. A1 - Pfeifer, Dietmar A1 - Ün, I. A1 - Gündüz, S. A1 - Yilmaz, H. A1 - Kankaew, P. A1 - Sudsiri, N. A1 - Shearman, K. A1 - Pookrod, P. A1 - Polzer, J. A1 - Radeck, W. T1 - CCQM-K104 Key Comparison on the characterization of organic substances for chemical purity - Avermectin B1a N2 - Anwendungen von qNMR KW - qNMR PY - 2017 SP - 1 EP - 32 AN - OPUS4-45035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ren, K. A1 - Guo, Y. A1 - Huang, W. A1 - Wei, A. A1 - Wu, Dejian T1 - Explosion characteristics of coal dusts in O2/N2 ambience: A novel method to determine limiting oxygen concentration N2 - The explosion characteristics of anthracite and bituminous coals in O2/N2 ambience were experimentally studied via a 20-L spherical explosion chamber with various ignition energies of 2, 5 and 10 kJ. A novel method based on combustion duration time was proposed for the first time, with an emphasis on the determination of the limiting oxygen concentration (LOC). The values of LOC determined by the alternative method were almost consistent with those obtained by using the standardized overpressure method, where the LOCs were above 21.6%, 19.8%, and 13.2% for anthracite coal and 11.4%, 9.6%, and 9.0% for bituminous coal when the ignition energy is 2, 5, and 10 kJ, respectively. But the newly proposed method was found to be much less affected by the ignition energy compared with the standardized overpressure method, taking combustion duration time as an explosion criterion thus had a higher efficiency and required fewer experiments. The results also showed that as oxygen concentration decreases from 21.6% to 14.4%, the maximum explosion pressure decreases from 0.4334 MPa to 0.1034 MPa for anthracite coal and from 0.5664 MPa to 0.3981 MPa for bituminous coal, respectively. Moreover, the effect of ignition energy varied with varying volatile matter content and ignition mechanism of coal dusts. The higher the volatile content, the less sensitive it is to the ignition energy. The newly proposed method will provide a reference for the new standard development, hazard analysis, explosion prevention and suppression by involving the use of inert gases of combustible powder industries. KW - Limiting oxygen concentration KW - Ignition energy KW - Coal dusts KW - Combustion duration time KW - Explosion criterion PY - 2022 DO - https://doi.org/10.1016/j.fuel.2022.124673 SN - 0016-2361 VL - 324, Part B SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-55051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guo, Y. A1 - Ren, K. A1 - Wei, A. A1 - Tao, C. A1 - Huang, W. A1 - Zhao, Peng A1 - Wu, Dejian T1 - Iron dust explosion characteristics with small amount of nano-sized Fe2O3 and Fe3O4 particles N2 - Iron powder, as one of the most abundant metal fuels that can be used as recyclable carriers of clean energy, is a promising alternative to fossil fuels in a future low-carbon economy. It may pose a potential explosion hazard during the process of processing, storage, transport, and reduction/oxidation (redox). The explosion characteristics of iron dust in air were undertaken via a 20 L spherical explosion chamber with an emphasis on minimum explosion concentration (MEC) of iron dust. The alternative method of combustion duration time (tc) was used to determine MEC and compared with the standardized over pressure method. Two kinds of nano-sized iron oxides (Fe2O3 and Fe3O4) were used as inertants to determine the inhibition effect of different oxidation products. The iron dust explosion products with various shapes and sizes were found to be able to grow up 4–6 times of the iron dust for the first time. Adding small amount of Fe2O3 or Fe3O4 could reduce the explosion severity and sensitivity of iron dust. The MEC data determined by both methods were comparable. The addition of 5 % oxide has obvious inhibition effect under 1500 g/m3 concentration. With the increase of oxide concentration to 10 %, the inerting effect increases, and the MEC of iron dust increases more than 3 times. The increase of dust concentration will weaken the inerting effect. When the concentration increases from 500 g/m3 to 3000 g/m3, the weakening effect of 10 % Fe2O3 on the explosion pressure decreases from 38.45 % to 2.24 %, and 10 % Fe3O4 decreases from 46.21 % to 10.63 %. Unlike coal, biomass or aluminum dusts, the iron dust explosion was found to have a unique secondary acceleration of pressure rise rate for the first time. These results provide a fundamental basis to mitigate the iron dust explosion via solid inerting method without adding extra elements. KW - Iron dust KW - Iron oxides KW - MEC KW - Combustion duration time KW - Explosion products KW - Pressure rise rate PY - 2022 DO - https://doi.org/10.1016/j.fuel.2022.124786 SN - 0016-2361 VL - 324, Part C SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-55057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Dejian A1 - Tan, X. A1 - Wei, A. A1 - Duan, Q. A1 - Huang, W. A1 - Schmidt, Martin T1 - Ignition temperature and mechanism of carbonaceous dust clouds: The roles of volatile matter, CH4 addition, O2 mole fraction and diluent gas N2 - Minimum ignition temperature of dust clouds (MITC) was studied experimentally and theoretically in different atmospheres. Three carbonaceous dusts were tested in both air and O2/CO2 atmospheres with CH4 mole fraction from 0 to 2%. Results showed that the ignition risk of the three dusts significantly increases (decrease of MITC by ~100 ℃) with increasing XO2 from 21% to 50%, but significantly decreases replacing N2 in air with CO2. The inhibition effect of CO2 on MITCs could be diminished by increasing XO2 or adding CH4. The addition of small amount of CH4 has different effects on the MITCs of different dust samples, following the opposite order of volatile matter content: anthracite>bituminous coal>starch. Two modified steady-state ignition models, considering the density of mixture gas and dust cloud, XO2 and its diffusivity, were developed to interpret the experimental observations. The analysis revealed that the global heterogeneous ignition model suits well for the hybrid mixtures of anthracite or bituminous coal dusts. In contrast, the proposed global homogeneous ignition model was found to be only valid for the pure starch dust, and the extra CH4 addition could strongly affect the ignition process of starch, particularly in O2/CO2 atmospheres with higher XO2. KW - Dust explosions KW - Gas explosions KW - Minimum ignition temperature KW - Hybrid mixtures PY - 2021 DO - https://doi.org/10.1016/j.jhazmat.2020.124189 SN - 0304-3894 SN - 1873-3336 VL - 405 SP - 1 EP - 10 PB - Elsevier CY - Amsterdam AN - OPUS4-53838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Dejian A1 - Schmidt, Martin A1 - Tan, X. A1 - Zhao, P. A1 - Huang, W. A1 - Qian, X. T1 - Minimum ignition temperature of carbonaceous dust clouds in air with CH4/H-2/CO below the gas lower explosion limit N2 - Godbert-Greenwald furnace was used to investigate the minimum ignition temperature of dust clouds (MITC) in air with the presence of flammable gas which is lower than its lower explosion limit (LEL). Three flammable gases (CH4, H2 and CO) and three carbonaceous dusts (anthracite coal, bituminous coal and sweet potato starch) were tested. Results showed that all flammable gases have distinct effects on the MITC of the dust samples and volatile matter content of dust plays an important role during the ignition process. Specifically, the MITC of anthracite coal dust decreased from 610 °C to 560 °C, 580 °C and 570 °C with 3% CH4, 3% CO and 2.5% H2, respectively. Moreover, a heterogeneous ignition mechanism model was proposed to verify the equally global ignition characteristic between hybrid anthracite coal-CxHy mixture and bituminous coal. All three gases had an ignorable effect on the MITC of starch dust considering the experimental error. The presence of CO and H2 slightly promoted the ignition of bituminous coal dust, but the addition of CH4 showed a distinct concentration effect on the MITC of bituminous coal: the MITC decreased with 1% CH4 while increased with 2% and 3% CH4. This negative-effect of flammable gases at such low concentrations on ignition temperature of bituminous coal dusts was found for the first time. Furthermore, the presence of the 2nd flammable gas had a smaller effect on the MITC of dust samples with a higher volatile content, resulted from the competition of heterogeneous and homogeneous ignition mechanisms. KW - Dust explosions KW - Gas explosions KW - Minimum ignition temperature KW - Hybrid mixtures PY - 2020 DO - https://doi.org/10.1016/j.fuel.2019.116811 SN - 0016-2361 VL - 264 SP - 116811 PB - Elsevier Ltd. AN - OPUS4-50856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Martin A1 - Wu, Dejian A1 - Zhao, P. A1 - Tan, X. A1 - Huang, W. A1 - Qianc, X. T1 - Minimum explosion concentrations of coal dusts with CH4/H2/CO below the gas lower explosion limit N2 - A 20-L spherical explosion chamber was used to investigate the explosion characteristics of dust clouds in air with the presence of flammable gas which is lower than its lower explosion limit (LEL). including minimum explosion concentration (MEC) of dust. Explosion pressure (Pex) and explosion pressure rise (dp/dt)ex). Two dust samples (anthracite coal, bituminous coal) and were three flammable gases (CH4, H2 and CO) were tested. Experimental results showed that the explosion of hybrid mixtures occurs when both dust and gas concentrations are lower than the LEL/MEC of the single substances. Meanwhile. all flammable gases with different volume fractions have distinct effects on the MEC. Pex and (dp/dt)ex of the dust samples. With the increase of the flammable gas concentration. either the Pex and (dp/dt)ex increase or the MEC decreases for all the hybrid mixtures of both two dust samples. At the same concentration of coal dusts. the addition of CH4 promotes higher explosion risks than the other two flammable gases. The distribution of (dp/dt)ex is quite different with the restricted area defined by empirical formulas. These results improve our understanding of the explosion behaviour and the explosion risk of hybrid dust-gas mixtures in air. KW - Dust explosions KW - Gas explosions KW - Minimum explosible concentration KW - Lower explosion limit KW - Hybrid mixtures PY - 2020 DO - https://doi.org/10.1016/j.fuel.2019.116401 SN - 0032-5910 VL - 260 SP - UNSP 116401 PB - Elsevier Sci. Ltd. AN - OPUS4-49956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, A1 - Zheng, A1 - Zhang, A1 - Lu, A1 - Wang, A1 - Kunte, Hans-Jörg A1 - Sand, W. T1 - Long Term Temperature and Humidity Evolution Forecast in Near Field of Nuclear Waste Container N2 - The paper aims to simulate the corrosion environment of nuclear waste containers at different geological disposal periods to obtain temperature and humidity information at the interface between the container and the surrounding environment. The simulated data and calculation results of long term temperature evolution at the surface of nuclear waste (HLW) containers from some typical nuclear countries about the safety disposition were reviewed. Combining different burial patterns, this paper speculated the long term temperature evolution rule for China. According to the study about saturation variation of buffer/backfill material at home and abroad, the humidity evolution of bentonite at the surface of HLW containers was specu- lated. The study showed that the temperature of the container surface increased rapidly at the beginning, and gradually decreased after the climax. For safety reasons, the maximum temperature was designed below 100°C. The saturation of bentonite was af- fected by the mutual influences of the heat released by nuclear waste decay and the infiltration of groundwater. It was dominated by the released heat in the early stage, and later was influenced greatly by the infiltration of groundwater. It is generally believed that the water content at the surface of the container will increase obviously in about 3 years, and will be saturated in about 10 years. The prediction of long-term temperature and humidity evolution will lay a foundation for study of corrosion evolution of nuclear waste containers in China. KW - Corrosion evolution KW - Nuclear waste KW - Disposal repository KW - Temperature and humidity PY - 2018 SN - 1672-9242 VL - 15 IS - 10 SP - 109 EP - 113 PB - Zhongguo Bingqi Gongye di-wujiu Yanjiusuo CY - Chongqing AN - OPUS4-46953 LA - zho AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, Y.-L. A1 - Zheng, A1 - Zhang, A1 - Lu, A1 - Wang, A1 - Kunte, Hans-Jörg A1 - Sand, W. T1 - Forecast on Long Term Chemical Environment Evolution on Surface of Nuclear Waste Container N2 - Surface environment changes of nuclear waste container, mainly including oxygen contents, buffer pore water components and pH under the conditions of “borehole” type and “In-floor” type with bentonite buffer/backfill and concrete buffer were summarized. This summarization provides a basic corrosion environment reference for the corrosion evolution re- search of high-level radioactive waste disposal repository in our country. KW - Corrosion evolution KW - Nuclear waste KW - Disposal repository KW - Corrosion environment PY - 2018 DO - https://doi.org/10.7643/ issn.1672-9242.2018.10.017 SN - 1672-9242 VL - 15 IS - 10 SP - 103 EP - 108 PB - Zhongguo Bingqi Gongye di-wujiu Yanjiusuo CY - Chongqing AN - OPUS4-46952 LA - zho AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kang, Y. A1 - Nack, L. M. A1 - Liu, Y. A1 - Qi, B. A1 - Huang, Y. A1 - Liu, Z. A1 - Chakraborty, I. A1 - Schulz, F. A1 - Ahmed, A. A. A. A1 - Poveda, M. C. A1 - Hafizi, F. A1 - Roy, S. A1 - Mutas, M. A1 - Holzapfel, M. A1 - Sanchez-Cano, C. A1 - Wegner, Karl David A1 - Feliu, N. A1 - Parak, W. J. T1 - Quantitative considerations about the size dependence of cellular entry and excretion of colloidal nanoparticles for different cell types N2 - Most studies about the interaction of nanoparticles (NPs) with cells have focused on how the physicochemical properties of NPs will influence their uptake by cells. However, much less is known about their potential excretion from cells. However, to control and manipulate the number of NPs in a cell, both cellular uptake and excretion must be studied quantitatively. Monitoring the intracellular and extracellular amount of NPs over time (after residual noninternalized NPs have been removed) enables one to disentangle the influences of cell proliferation and exocytosis, the major pathways for the reduction of NPs per cell. Proliferation depends on the type of cells, while exocytosis depends in addition on properties of the NPs, such as their size. Examples are given herein on the role of these two different processes for different cells and NPs. KW - Cell proliferation KW - Exocytosis KW - Gold nanoparticles KW - Quantum dots KW - Fluorescence KW - Uptake studies PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543476 DO - https://doi.org/10.1007/s40828-021-00159-6 SN - 2199-3793 VL - 8 IS - 1 SP - 1 EP - 8 PB - Springer CY - Berlin AN - OPUS4-54347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kang, Y. A1 - Nack, L. A1 - Liu, Y. A1 - Qi, B. A1 - Huang, Y. A1 - Liu, Z. A1 - Chakraborty, I. A1 - Schulz, F. A1 - Ahmed, A. A. A1 - Poveda, M. C. A1 - Hafizi, F. A1 - Roy, S. A1 - Mutas, M. A1 - Holzapfel, M. A1 - Sanchez-Cano, C. A1 - Wegner, Karl David A1 - Feliu, N. A1 - Parak, W. J. T1 - Correction to: Quantitative considerations about the size dependency for cellular entry and excretion of colloidal nanoparticles for different cell types N2 - We regret to inform that the labels "NPs which remain in endosomes/lysosomes" and "exocytosed NPs" had been erroneously swapped in the sketch on the right side in Figure 2. The corrected Fig. 2 is displayed below. WJP apologizes for this error. KW - Cell proliferation KW - Exocytosis KW - Gold nanoparticles KW - Quantum dots KW - Uptake studies PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554519 DO - https://doi.org/10.1007/s40828-022-00168-z VL - 8 IS - 17 SP - 1 EP - 2 PB - Springer CY - Berlin AN - OPUS4-55451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pu, Y. A1 - Celorrio, V. A1 - Stockmann, Jörg M. A1 - Sobol, Oded A1 - Sun, Z. A1 - Wang, W. A1 - Lawrence, M. J. A1 - Radnik, Jörg A1 - Russel, A. E. A1 - Hodoroaba, Vasile-Dan A1 - Huang, L. A1 - Rodriguez, P. T1 - Surface galvanic formation of Co-OH on Birnessite and its catalytic activity for the oxygen evolution reaction N2 - Low-cost, high-efficient catalysts for water splitting can be potentially fulfilled by developing earthabundant metal oxides. In this work, surface galvanic formation of Co-OH on K0.45MnO2 (KMO) was achieved via the redox reaction of hydrated Co2+ with crystalline Mn4+. The synthesis method takes place at ambient temperature without using any surfactant agent or organic solvent, providing a clean, green route for the design of highly efficient catalysts. The redox reaction resulted in the formation of ultrathin Co-OH nanoflakes with high electrochemical surface area. X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) analysis confirmed the changes in the oxidation state of the bulk and surface species on the Co-OH nanoflakes supported on the KMO. The effect of the anions, such as chloride, nitrate and sulfate, on the preparation of the catalyst was evaluated by electrochemical and spectrochemical means. XPS and Time of flight secondary ion mass spectrometry (ToF-SIMS) analysis demonstrated that the layer of CoOxHy deposited on the KMO and its electronic structure strongly depend on the anion of the precursor used during the synthesis of the catalyst. In particular, it was found that Cl- favors the formation of Co-OH, changing the rate-determining step of the reaction, which enhances the catalytic activity towards the OER, producing the most active OER catalyst in alkaline media. KW - Nanoparticles KW - Oxygen evolution reaction (OER) KW - Catalysis KW - ToF-SIMS KW - XPS KW - K-rich Birnessite (K0.45MnO2) PY - 2021 DO - https://doi.org/10.1016/j.jcat.2021.02.025 VL - 396 SP - 304 EP - 314 PB - Elsevier Inc. AN - OPUS4-52328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -