TY - CONF A1 - Habel, Wolfgang A1 - Schukar, Vivien A1 - Kusche, Nadine T1 - Calibration facility for quality certification of surface-attached fiber optic and electrical strain sensors T2 - IEEE Sensors 2011 conference (Proceedings) N2 - Strain measurement in structures witli the purpose of long-term structurai health inonitoring must provide reliable inforination about the structure’s behavior over the whole period of use. The user must be sure that installed sensors are validated and work to the utmost satisfactiou. For this purpose, sensor Systems are tested using special facilities. Bccause it is not easy to characterize the strain transfer quality from the host structure into surface-applied strain sensors, a unique testing facility has been developed. Originally developed for fiber Bragg grating based sensors, the KALFOS facility (= calibration of fiber optic sensors) can also be used for electrical strain sensors. Calibration ineasurements are referenced by unbinsed Digital Image Correlation (D1C) and Electronic Speckle Pattern Interferometer (ESPI) methods. The strain transfer behavior can experimentally be analyzed and investigated under combined thermal and mechanical loading conditions and allows revealing wealuiesses in couimonly used attachment methodologies. The deformation of all members (particularly the coating/substrate - adhesive combination) in the sensing area is physically independently gained and recorded. Results achievcd allow precise description of the strain transfer function, Validation of the longterm strain sensor characteristics, matching of specific measurement requirements with environmental conditions, and, moreover, the verification of Standards for use of strain sensors. T2 - IEEE Sensors 2011 conference CY - Limerick, Ireland DA - 28.10.2011 KW - Fibre optic sensors KW - Structural health monitoring KW - Validation KW - Strain sensor KW - Surface application reliability PY - 2011 SN - 978-1-4244-9288-6 DO - https://doi.org/10.1109/ICSENS.2011.6127253 SP - 1337 EP - 1340 AN - OPUS4-24655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilder, Constanze A1 - Kusche, Nadine A1 - Schukar, Vivien A1 - Habel, Wolfgang ED - Liao, Y. ED - Jin, W. ED - Sampson, D.D. ED - Yamauchi, R. ED - Chung, Y. ED - Nakamura, K. ED - Rao, Y. T1 - Experimental qualification and validation of fibre optic strain sensors T2 - OFS2012 - 22nd International conference on optical fiber sensors (Proceedings) N2 - Strain sensors used in practical applications must provide reliable measurement data. To achieve this, sensor systems must be validated by using experimental facilities that enable physically independent statements about the performance of the sensor components. The paper describes qualification and validation procedures using a special facility to qualify surface-applied strain sensors and to achieve reliable sensor results. Based on examples concerning fibre optic strain sensor patches with and without FBG sensors, the determination of the strain gauge factor also under combined thermal and mechanical loading will be presented. These results are the basis for development of guidelines and standards. T2 - OFS2012 - 22nd International conference on optical fiber sensors CY - Beijing, China DA - 2012-10-15 KW - Fiber Bragg gratings KW - Sensors PY - 2012 DO - https://doi.org/10.1117/12.968801 SN - 0277-786X SN - 1996-756X N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE IS - 8421 SP - 1 EP - 4(?) PB - SPIE, the International Society for Optical Engineering CY - Bellingham, Wash. AN - OPUS4-27321 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kusche, Nadine A1 - Schukar, Vivien A1 - Hofmann, Detlef A1 - Basedau, Frank A1 - Habel, Wolfgang A1 - Woschitz, H. A1 - Lienhart, W. ED - Jaroszewicz, L.R. T1 - Field examples for optical fibre sensor condition diagnostics based on distributed fibre-optic strain sensing T2 - EWOFS 2013 - 5th European workshop on optical fibre sensors (Proceedings) N2 - Fibre optic sensors for monitoring in safety-relevant structures have to be validated in order to proof their reliability under typical structural load conditions. The reliable use of optical fibre sensors depends strongly on an appropriate and qualitative application. Diagnostics of the physical condition of embedded and surface-applied fibre optic strain sensors are demonstrated on field examples. Distributed strain measurement based on Rayleigh backscattering is used to determine breakage of the fibre, interface adhesion problems and to identify application related strain transfer mechanisms. T2 - EWOFS 2013 - 5th European workshop on optical fibre sensors CY - Kraków, Poland DA - 19.05.2013 KW - Fibre Bragg grating KW - Rayleigh backscattering KW - Condition diagnostics KW - Strain KW - Strain transfer PY - 2013 SN - 978-0-81949-634-8 DO - https://doi.org/10.1117/12.2025567 SN - 0277-786X N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE VL - 8794 IS - Paper 8794 - 181 SP - 879433-1 EP - 879433-4 AN - OPUS4-28570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habel, Wolfgang A1 - Schukar, Vivien A1 - Tkachenko, Viktoriya T1 - How do application-related issues influence the reliability of fiber optic strain measurements? T2 - IEEE Sensors 2011 conference (Proceedings) N2 - Fibre optic strain sensors are increasingly used and sensor systems are provided with specifications. Even if the performance is well specified, the strain characteristics of the sensor, strain transfer factor, mechanical stability under thermal influences, the performance of applied strain sensors can seriously differ from virgin sensor's the performance. The contribution will focus on issues that can deteriorate the sensor function or reduce the reliability of measurement results. Aspects are considered how to come to reliable strain measurements and how to validate strain measurements of applied sensors. Related to this topic, European activities like the recently started European COST TD1001 action, called (OfSeSa) will be presented. T2 - IEEE Sensors 2011 conference CY - Limerick, Ireland DA - 28.11.2011 KW - Fibre optic sensors KW - Structural health monitoring KW - Validation KW - Strain sensor KW - Surface application reliability PY - 2011 SN - 978-1-4244-9288-6 SP - 947 EP - 950 AN - OPUS4-24656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schukar, Vivien A1 - Köppe, Enrico A1 - Hofmann, Detlef A1 - Westphal, Anja A1 - Sahre, Mario A1 - Gong, Xin A1 - Bartholmai, Matthias A1 - Beck, Uwe T1 - Magnetic field detection with an advanced FBG-based sensor device T2 - 30th Eurosensors Conference - EUROSENSORS 2016 N2 - A high-performance fiber Bragg grating-based (FBG) sensor device has been developed for the detection of small magnetic fields. Based on a smart multilayer jacket around the fibre over the physical length of the FBG, magnetic fields generated by rotating machine parts, power generators or power cable can be easily detected, analysed and evaluated. Consequently, this innovative, on-line and non-contact inspection method results in an increase in quality and reliability of high-performing machine parts, devices and cables. The basic physical principle is based on a magnetostrictive multilayer system that strains the high-resolution FBG element in presence of magnetic fields. Subsequently, a fixed relationship between induced magnetic field and wavelength change of the FBG element describes the characteristic sensitivity curve. Intensive tests regarding characterisation of this magnetic field FBG sensor have been carried out and its performance has been evaluated. T2 - 30th Eurosensors Conference, EUROSENSORS 2016 CY - Budapest, Hungary DA - 04.09.2016 KW - Fiber Bragg grating KW - Magnetostriction KW - Strain KW - Magnetic field PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-376703 DO - https://doi.org/10.1016/j.proeng.2016.11.445 SN - 1877-7058 VL - 168 SP - 1270 EP - 1274 PB - Elsevier Ltd. AN - OPUS4-37670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schukar, Vivien A1 - Gong, Xin A1 - Hofmann, Detlef A1 - Basedau, Frank A1 - Köppe, Enrico A1 - Bartholmai, Matthias A1 - Westphal, Anja A1 - Sahre, Mario A1 - Beck, Uwe ED - Berghmans, F. ED - Mignani, A. G. T1 - Modelling and simulation of a fibre Bragg grating strain sensor based on a magnetostrictive actuator principle T2 - Optical Sensing and Detection IV N2 - A new concept for the self-diagnosis of embedded fiber Bragg grating (FBG) strain sensors was developed, simulated and experimentally tested. This concept is based on a magnetostrictive metallic layer directly coated on the fibre cladding over the grating segment of the FBG sensor, so that an on-demand external magnetic field in a millitesla scale can produce a controllable artificial strain as an indication signal for the remote optical interrogator. The relationship between the pre-defined magnetic field and its induced Bragg wavelength shift characterizes this validation concept. Any deviation of the local bonding state of the interfaces from the initial or/and any change of shear strain transferring mechanism from composite matrix to the optical fibre core will result in alterations in this sensitive relationship, and thus triggers an immediate alert for a further inspection. The finite element method is used to simulate the strain of this configuration as result of different values of the magnetic field in order to optimize the geometrical sensor parameters. The simulations are verified by experiments results. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only. T2 - Optical Sensing and Detection IV CY - Brüssel, Belgium DA - 03.04.2016 KW - Fiber Bragg gratings KW - Actuators KW - Modeling and simulation KW - Finite element methods PY - 2016 SN - 9781510601444 DO - https://doi.org/10.1117/12.2224728 SN - 0277-786X SN - 1996-756X VL - 9899 SP - 9899-39 PB - SPIE Digital Library AN - OPUS4-38634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Köppe, Enrico A1 - Bartholmai, Matthias A1 - Daum, Werner A1 - Gong, Xin A1 - Hofmann, Detlef A1 - Basedau, Frank A1 - Schukar, Vivien A1 - Westphal, Anja A1 - Sahre, Mario A1 - Beck, Uwe T1 - New self diagnostic fiber optical sensor technique for structural health monitoring T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics (Proceedings) N2 - Fiber optic sensors have gained increasing importance in recent years and are well established in many areas of industrial applications. In this paper, we introduce a concept of a self-diagnostic fiber optic sensor. The presented sensor is to resolve the problems of embedded fiber optic sensors in complex structures and to enable the validation under operational conditions. For this purpose, different magnetostrictive coated fiber optic sensors were developed and various experiments were performed to verify their mode of operation and to determine the respective reproducibility. The measuring principle is illustrated by obtained experimental results, which showed a change in wavelength from 1 pm at a magnetic field strength change of 0.25 mT. In addition, the temperature characteristics of the implemented magnetostrictive sensor were analyzed and an experimental factor of 1.5 compared to a reference fiber optic sensor was determined. T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 PY - 2015 SN - 978-80-554-1094-4 SP - 1 EP - 2 CY - Zilina AN - OPUS4-35173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habel, Wolfgang A1 - Schukar, Vivien A1 - Hofmann, Detlef T1 - Requirements to establish fibre-optic sensors for monitoring of structures T2 - EWSHM 2014 - 7th European workshop on structural health monitoring (Proceedings) N2 - Fibre-optic sensors need to be more established in the sensor market. Their advantages have unquestionably been verified by numerous demonstrations. However, there are some open questions leading now and then to restraints in the user's community. The paper dicusses examples where fibre-optic sensors provide outstanding knowledge about the structure's behaviour, but application is often challenging. Requirements are listed and open questions to be solved are discussed. Short outlook to standards useful for better design, characterization and application is given. Standards are the basis for establiching SHM systems, especially for safety-critical structural diagnostics. T2 - EWSHM 2014 - 7th European workshop on structural health monitoring CY - Nantes, France DA - 08.07.2014 KW - Monitoring KW - Fibre-optic sensor KW - Reliability KW - Application PY - 2014 SP - 2330 EP - 2337 AN - OPUS4-32662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habel, Wolfgang A1 - Schukar, Vivien A1 - Tkachenko, Viktoriya A1 - Hofmann, Detlef A1 - Basedau, Frank ED - Xu, Y. L. ED - Zhu, S. ED - Xia, Y. ED - Ni, Y.Q. ED - Law, S.S. ED - Yin, J. H. ED - Su, Z.Q. T1 - Values gained from composite-embedded sensor fibres - trustworthy results or vague estimations; possibilities and limitations of getting reliable measurement results T2 - SHMII-6 - 6th International conference on structural health monitoring of intelligent infrastructure (Proceedings) T2 - SHMII-6 - 6th International conference on structural health monitoring of intelligent infrastructure CY - Hong Kong, China DA - 2013-12-09 KW - Composite materials KW - Embedded sensors KW - Monitoring KW - Early damage detection KW - Validation KW - Reliability KW - Maintenance KW - Repair PY - 2013 SN - 978-962-367-768-4 SP - 1 EP - 11(?) AN - OPUS4-29912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -