TY - CONF A1 - Habel, Wolfgang A1 - Schukar, Vivien A1 - Kusche, Nadine T1 - Calibration facility for quality certification of surface-attached fiber optic and electrical strain sensors N2 - Strain measurement in structures witli the purpose of long-term structurai health inonitoring must provide reliable inforination about the structure’s behavior over the whole period of use. The user must be sure that installed sensors are validated and work to the utmost satisfactiou. For this purpose, sensor Systems are tested using special facilities. Bccause it is not easy to characterize the strain transfer quality from the host structure into surface-applied strain sensors, a unique testing facility has been developed. Originally developed for fiber Bragg grating based sensors, the KALFOS facility (= calibration of fiber optic sensors) can also be used for electrical strain sensors. Calibration ineasurements are referenced by unbinsed Digital Image Correlation (D1C) and Electronic Speckle Pattern Interferometer (ESPI) methods. The strain transfer behavior can experimentally be analyzed and investigated under combined thermal and mechanical loading conditions and allows revealing wealuiesses in couimonly used attachment methodologies. The deformation of all members (particularly the coating/substrate - adhesive combination) in the sensing area is physically independently gained and recorded. Results achievcd allow precise description of the strain transfer function, Validation of the longterm strain sensor characteristics, matching of specific measurement requirements with environmental conditions, and, moreover, the verification of Standards for use of strain sensors. T2 - IEEE Sensors 2011 conference CY - Limerick, Ireland DA - 28.10.2011 KW - Fibre optic sensors KW - Structural health monitoring KW - Validation KW - Strain sensor KW - Surface application reliability PY - 2011 SN - 978-1-4244-9288-6 U6 - https://doi.org/10.1109/ICSENS.2011.6127253 SP - 1337 EP - 1340 AN - OPUS4-24655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habel, Wolfgang A1 - Schukar, Vivien A1 - Tkachenko, Viktoriya T1 - How do application-related issues influence the reliability of fiber optic strain measurements? N2 - Fibre optic strain sensors are increasingly used and sensor systems are provided with specifications. Even if the performance is well specified, the strain characteristics of the sensor, strain transfer factor, mechanical stability under thermal influences, the performance of applied strain sensors can seriously differ from virgin sensor's the performance. The contribution will focus on issues that can deteriorate the sensor function or reduce the reliability of measurement results. Aspects are considered how to come to reliable strain measurements and how to validate strain measurements of applied sensors. Related to this topic, European activities like the recently started European COST TD1001 action, called (OfSeSa) will be presented. T2 - IEEE Sensors 2011 conference CY - Limerick, Ireland DA - 28.11.2011 KW - Fibre optic sensors KW - Structural health monitoring KW - Validation KW - Strain sensor KW - Surface application reliability PY - 2011 SN - 978-1-4244-9288-6 SP - 947 EP - 950 AN - OPUS4-24656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilder, Constanze A1 - Kusche, Nadine A1 - Schukar, Vivien A1 - Münzenberger, Sven A1 - Habel, Wolfgang T1 - Experimental qualification by extensive evaluation of fibre optic strain sensors N2 - Fibre optic strain sensors used in practical applications have to provide reliable measurements. Therefore, the applied sensor and the sensor systems must be validated experimentally. This can be achieved with facilities which use physically independent measurement systems in order to avoid the influences caused by the application of a reference sensor. This paper describes the testing methods of the specially developed validation facility KALFOS for the qualification and evaluation of surface-applied strain sensors. For reliable sensor results, the performance of fibre optic strain patches with and without FBG under combined thermal and mechanical loading was investigated. Additionally, the strain gauge factor of the fibre optic strain patches with FBG was determined experimentally and compared to the specified strain gauge factor. These results will be the basis for the development of guidelines and standards concerning the application of the sensors. KW - Evaluation KW - Qualification KW - Strain transfer KW - Fibre optic sensors KW - Fibre Bragg grating KW - Patch KW - Strain gauge KW - Validation facility KW - Laser extensometer KW - Electronic speckle pattern interferometry PY - 2013 U6 - https://doi.org/10.1088/0957-0233/24/9/094005 SN - 0957-0233 SN - 1361-6501 VL - 24 IS - 9 SP - 094005-1 EP - 094005-7 PB - IOP Publ. Ltd. CY - Bristol AN - OPUS4-29424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Habel, Wolfgang A1 - Schukar, Vivien T1 - Reliability issues when using fibre optic strain sensors for materials investigations and structural monitoring N2 - Reliable measurement results with fibre optic sensors require profound knowledge of physical mode of function, of materials used and appropriate application. There is often serious discrepancy between use in laboratory environment and on site. The paper identifies important aspects to be considered and shows ways to transfer innovations onto practical use. T2 - Photonics 2010 - 10th International conference on fiber optics & photonics CY - Guwahati, India DA - 2010-12-11 KW - Fibre optic sensors KW - Reliability KW - Validation KW - Calibration KW - Long-term stability KW - Materials behaviour KW - Speckle-interferometry KW - 3D-image correlation KW - Strain measurement PY - 2010 SN - 978-81-309-1719-1 SP - 1 EP - 4 AN - OPUS4-22985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -