TY - JOUR A1 - Schukar, Vivien A1 - Kusche, Nadine A1 - Kalinka, Gerhard A1 - Habel, Wolfgang T1 - Field deployable fiber bragg grating strain patch for long-term stable health monitoring applications JF - Applied sciences N2 - A fiber Bragg grating (FBG) strain patch specially adapted for long-term and high-strain applications has been developed and characterized. The design concept for the patch is based on a glass-fiber reinforced plastic (gfrp) carrier material. The developed concept for the FBG integration into the carrier material was derived from reliable integration procedure of FBG sensors into composite structures. The patches' temperature sensitivity, strain gauge factor, fiber–matrix interface adhesion and fatigue behavior were characterized. As a result, FBG strain patches with linear temperature and strain behavior, as well as excellent fatigue resistance, were developed and can be used as part of a monitoring system for advanced composite materials in aerospace structures or wind turbine power plants. KW - Fiber Bragg grating KW - Patch KW - Strain gauge factor KW - Temperature sensitivity KW - Push-out test KW - Validation KW - Fatigue behavior PY - 2013 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-276271 DO - https://doi.org/10.3390/app3010039 SN - 2076-3417 VL - 3 IS - 1 SP - 39 EP - 54 PB - MDPI CY - Basel AN - OPUS4-27627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kusche, Nadine A1 - Schukar, Vivien A1 - Schilder, Constanze A1 - Köppe, Enrico A1 - Habel, Wolfgang ED - Chang, F.-K. T1 - Development and qualification of FBG-based strain patches and rosettes T2 - IWSHM 2011 - 8th International workshop on structural health monitoring 2011 (Proceedings) N2 - A fibre Bragg grating (FBG) strain patch specially adapted for long-term and high-strain applications was developed and characterised. Additionally, in the case of unknown main stress axis, two fibre optic strain rosettes were developed. The design concept for the patch and the rosettes is based on a glass fibre reinforced plastic (gfrp) carrier material. The patches were characterised due to their strain gauge factor and fatigue behaviour. As a result, FBG strain patches with linear strain behaviour and excellent fatigue resistance were developed and can be used as part of a monitoring system for aerospace structures or wind turbine power plants. The rosettes were designed to be small in geometrical size and their strain transfer behaviour was characterised. T2 - 8th International workshop on structural health monitoring 2011 CY - Stanford, CA, USA DA - 13.09.2011 KW - Fibre Bragg grating KW - Patch KW - Rosette KW - Strain gauge factor KW - Fatigue behaviour KW - Validation PY - 2011 SN - 978-1-60595-053-2 VL - 2 SP - 1457 EP - 1465 PB - DEStech Publications, Inc. AN - OPUS4-24512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -