TY - JOUR A1 - Gornushkin, Igor B. A1 - Dell’Aglio, M. A1 - Motto-Ros, V. A1 - Pelascini, F. A1 - De Giacomo, A. T1 - Investigation on the material in the plasma phase by high temporally and spectrally resolved emission imaging during Pulsed Laser Ablation (PLAL) in Liquid for NPs production and consequent considerations on NPs formation N2 - In this paper experimental temperature and density maps of the laser induced plasma in water during Pulsed Laser ablation in Liquid (PLAL) for the production of metallic nanoparticles (NPs) has been determined. A detection system based on the simultaneous acquisition of two emission images at 515 and 410 nm has been constructed and the obtained images have been processed simultaneously by imaging software. The results of the data analysis show a variation of the temperature between 4000 and 7000 K over the plasma volume. Moreover, by the study of the temperature distribution and of the number densities along the plasma expansion axis it is possible to observe the condensation zone of the plasma where NPs can be formed. Finally, the time associated to the electron processes is estimated and the plasma charging effect on NPs is demonstrated. The set of observations retrieved from these experiments suggests the importance of the plasma phase for the growth of NPs and the necessity of considering the spatial distribution of plasma parameters for the understanding of one of the most important issues of the PLAL process, that is the source of solid material in the plasma phase. KW - LIBS KW - Laser induced plasma KW - Plasma modeling KW - Plasma diagnostics KW - Nanoparticle formation PY - 2019 U6 - https://doi.org/10.1088/1361-6595/ab369b VL - 28 IS - 8 SP - Article Number: 085017 PB - IOP Publishing AN - OPUS4-48753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -