TY - JOUR A1 - Schneider, Rudolf A1 - Almeida, Ângela A1 - Calisto, V. A1 - Esteves, V.I. A1 - Soares, A.M.V.M. A1 - Figueira, E. A1 - Freitas, R. T1 - Toxicity associated to uptake and depuration of carbamazepine in the clam Scrobicularia plana under a chronic exposure JF - SCIENCE OF THE TOTAL ENVIRONMENT N2 - Carbamazepine (CBZ) is an antiepileptic drug commonly detected in aquatic systems, with toxic effects to inhabiting organisms. Limited information is known on stress response biomarkers associated to bioconcentration and depuration of CBZ in aquatic organisms. Moreover, few studies addressed if the response and recovery of organisms to a contaminant can change when they are collected in a contaminated site. This study intended to understand the bioconcentration and depuration of CBZ combined with its toxicological impact in Scrobicularia plana clams collected from two contrasting areas (MIRA, Mira channel, non-contaminated and LAR, Laranjo bay, arithropogenically impacted) from the Ria de Aveiro (Portugal). The clams were exposed for 14 days to environmentally relevant CBZ concentrations (0.0, 4.0 and 8.0 mu g/L), followed by a 14 day depuration period. CBZ concentrations in S. plana tissues were rapidly bioconcentrated during the exposure period. In the depuration period CBZ was eliminated, in some extent. The main toxic effects occurred at the highest concentration (8.0 mu g/L) after 14 days of exposure in which the clams from LAR accumulated ahigher CBZ concentration (LAR: similar to 10 ng/g FW) than clams from MIRA (MIRA: similar to 7 ng/g FW). LAR clams exhibited higher oxidative damage at this concentration, demonstrated by higher LPO levels over time (increase of similar to 1.4% relative to control) and, in comparison with MIRA clams (LAR: 17.7 nmol/g FW; MIRA: 11.4 nmol/g FW). After the depuration period, LAR clams recovered from the stress induced by CBZ. A decrease in LPO for LAR (decrease of similar to 40% in relation to the end of the exposure period) was accompanied by a decrease in CBZ tissue concentrations (decrease of similar to 61% relative to the end of the exposure period). MIRA clams were not oxidatively injured (low LPO levels remained unchanged after the depuration and CBZ decreased similar to 80% relative to the end of the exposure period). KW - Invertebrates KW - Pharmaceutical drugs KW - Biomarkers KW - Oxidative stress PY - 2017 DO - https://doi.org/10.1016/j.scitotenv.2016.12.069 SN - 0048-9697 VL - 580 SP - 1129 EP - 1145 AN - OPUS4-43297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Rudolf A1 - Teixiera, M. A1 - Almeida, Ângela A1 - Calisto, V. A1 - Esteves, V. I. A1 - Wrona, F. J. A1 - Soares, A. M. V. M. A1 - Figueira, E. A1 - Freitas, R. T1 - Toxic effects of the antihistamine cetirizine in mussel Mytilus galloprovincialis JF - WATER RESEARCH N2 - Recent studies have become increasingly focused on the assessment of pharmaceuticals occurrence in aquatic ecosystems, however the potential toxicity to non-target organisms is still largely unknown. The antihistamine cetirizine is a commonly used pharmaceutical, already detected in surface waters of marine aquatic systems worldwide. In the present study Mytilus galloprovincialis mussels were exposed to a range of cetirizine concentrations (0.3, 3.0, 6.0 and 12.0 mu/L), resembling moderate to highly contaminated areas, over 28 days. The responses of different biochemical markers were evaluated in mussels whole soft tissue, and included energy-related parameters (glycogen content, GLY; protein content, PROT; electron transport system activity, ETS), and oxidative stress markers (superoxide dismutase activity, SOD; catalase activity, CAT; glutathione S-transferases activity, GSTs; lipid peroxidation levels, LPO; reduced (GSH) and oxidized (GSSG) glutathione content). The results obtained demonstrated that with the increase of exposure concentrations mussels tended to increase their energy reserves and maintain their metabolic potential, which was significantly higher only at the highest concentration. Our findings clearly revealed that cetirizine inhibited the activity of GSTs and although induced the activity of antioxidant enzymes (SOD and CAT) mussels were not able to prevent cellular damages observed through the increase of LPO associated to the increase of exposure concentrations. Thus, this study confirmed that cetirizine induces toxic effects in Mytilus galloprovincialis, which, considering their trophic relevance, wide use as bioindicator and wide spatial distribution of this species, can result in ecological and economic negative impacts at a large scale. KW - Bivalves KW - Biomarkers KW - Oxidative Stress PY - 2017 DO - https://doi.org/10.1016/j.watres.2017.02.032 SN - 0043-1354 VL - 114 SP - 316 EP - 326 AN - OPUS4-43302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, H. J. A1 - Bucheli, T. D. A1 - Dieguez-Alonso, A. A1 - Fabbri, D. A1 - Knicker, H. A1 - Schmidt, H.-P. A1 - Ulbricht, A. A1 - Becker, Roland A1 - Buscaroli, A. A1 - Buerge, D. A1 - Cross, A. A1 - Dickinson, D. A1 - Enders, A. A1 - Esteves, V.I. A1 - Evangelou, M. W. H. A1 - Fellet, G. A1 - Friedrich, K. A1 - Gasco Guerrero, G. A1 - Glaser, B. A1 - Hanke, U. M. A1 - Hanley, K. A1 - Hilber, I. A1 - Kalderis, D. A1 - Leifeld, J. A1 - Masek, O. A1 - Mumme, J. A1 - Paneque Carmona, M. A1 - Calvelo Pereira, R. A1 - Rees, F. A1 - Rombola, A. G. A1 - de la Rosa, J. M. A1 - Sakrabani, R. A1 - Sohi, S. A1 - Soja, G. A1 - Valagussa, M. A1 - Verheijen, F. A1 - Zehetner, F. T1 - Towards the standardization of biochar analysis: the COST action TD1107 interlaboratory comparison JF - Journal of agricultural and food chemistry N2 - Biochar produced by pyrolysis of organic residues is increasingly used for soil amendment and many other applications. However, analytical methods for its physical and chemical characterization are yet far from being specifically adapted, optimized, and standardized. Therefore, COST Action TD1107 conducted an interlaboratory comparison in which 22 laboratories from 12 countries analyzed three different types of biochar for 38 physical–chemical parameters (macro- and microelements, heavy metals, polycyclic aromatic hydrocarbons, pH, electrical conductivity, and specific surface area) with their preferential methods. The data were evaluated in detail using professional interlaboratory testing software. Whereas intralaboratory repeatability was generally good or at least acceptable, interlaboratory reproducibility was mostly not (20% < mean reproducibility standard deviation < 460%). This paper contributes to better comparability of biochar data published already and provides recommendations to improve and harmonize specific methods for biochar analysis in the future. KW - Biochar KW - Analysis KW - Standardization KW - Ring test KW - Interlaboratory comparison PY - 2016 DO - https://doi.org/10.1021/acs.jafc.5b05055 SN - 0021-8561 SN - 1520-5118 VL - 64 IS - 2 SP - 513 EP - 527 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-35289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Freitas, R. A1 - Almeida, Ângela A1 - Calisto, V. A1 - Velez, C. A1 - Moreira, A. A1 - Schneider, Rudolf A1 - Esteves, V. I. A1 - Wrona, F. J. A1 - Figueira, E. A1 - Soares, A. M. V. M. T1 - The impacts of pharmaceutical drugs under ocean acidification: Newdata on single and combined long-term effects of carbamazepine on Scrobicularia plana JF - Science of the Total Environment N2 - Ocean acidification and increasing discharges of pharmaceutical contaminants into aquatic systems are among key and/or emerging drivers of environmental change affecting marine ecosystems. A growing body of evidence demonstrates that ocean acidification can have direct and indirect impacts on marine organisms although combined effects with other stressors, namely with pharmaceuticals, have received very little attention to date. The present study aimed to evaluate the impacts of the pharmaceutical drug Carbamazepine and pH 7.1, acting alone and in combination, on the clamScrobicularia plana. For this, a long-termexposure (28 days)was conducted and a set of oxidative stress markers was investigated. The results obtained showed that S. plana was able to develop mechanisms to prevent oxidative damage when under low pH for a long period, presenting higher survival when exposed to this stressor compared to CBZ or the combination of CBZ with pH 7.1. Furthermore, the toxicity of CBZ on S. plana was synergistically increased under ocean acidification conditions (CBZ + pH 7.1): specimens survival was reduced and oxidative stress was enhanced when compared to single exposures. These findings add to the growing body of evidence that ocean acidification will act to increase the toxicity of CBZ to marine organisms,which has clear implications for coastal benthic ecosystems suffering chronic pollution from pharmaceutical drugs. KW - Ocean acidification KW - Pharmaceuticals KW - Biomarkers KW - Oxidative stress KW - Clams KW - Long-term exposures PY - 2016 DO - https://doi.org/10.1016/j.scitotenv.2015.09.138 VL - 541 SP - 977 EP - 985 PB - Elsevier B.V. AN - OPUS4-38502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Holger A1 - Baldofski, Stefanie A1 - Hoffmann, Kristin A1 - Flemig, Sabine A1 - Silva, C. P. A1 - Esteves, V. I. A1 - Emmerling, Franziska A1 - Panne, Ulrich A1 - Schneider, Rudolf T1 - Structural considerations on the selectivity of an immunoassay for sulfamethoxazole JF - Talanta N2 - Sulfamethoxazol (SMX),a sulfonamide, is a widely used bacteriostatic antibiotic and therefore a promising marker for the entry of anthropogenic Pollution in the environment. SMX is frequently found in wastewater and surface water. This study presents the production of high affinity and selective polyclonal antibodies for SMX and the development and Evaluation of a direct competitive enzyme-linked immunosorbent assay(ELISA)for the quantification of SMX in environmental watersamples. The crystal structures of the cross-reacting compounds sulfamethizole, N4-acetyl-SMX andsuccinimidyl-SMX were determined by x-ray diffraction aiming to explain their high cross-reactivity. These crystal structures are described for the first time. The quantification range of the ELISA is 0.82–63 µg/L. To verify our results, the SMX concentration in 20 environmental samples,including wastewater and surfacewater,was determined by ELISA and tandem mass spectrometry(MS/MS).A good Agreement of the measured SMX concentrations was found with average recoveries of 97–113%for the results of ELISA compared to LC-MS/MS. KW - X-Ray diffraction KW - Sulfamethoxazole KW - ELISA KW - LC-MS/MS PY - 2016 DO - https://doi.org/10.1016/j.talanta.2016.05.049 SN - 0039-9140 SN - 1873-3573 IS - 158 SP - 198 EP - 207 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-36676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Holger A1 - Baldofski, Stefanie A1 - Hoffmann, Kristin A1 - Flemig, Sabine A1 - Silva, C. P. A1 - Esteves, V. I. A1 - Emmerling, Franziska A1 - Panne, Ulrich A1 - Schneider, Rudolf T1 - Structural considerations on the selectivity of an immunoassay for sulfamethoxazole JF - Talanta N2 - Sulfamethoxazol (SMX),a sulfonamide, is a widely used bacteriostatic antibiotic and therefore a promising marker for the entry of anthropogenic Pollution in the environment. SMX is frequently found in wastewater and surface water. This study presents the production of high affinity and selective polyclonal antibodies for SMX and the development and Evaluation of a direct competitive enzyme-linked immunosorbent assay(ELISA)for the quantification of SMX in environmental watersamples. The crystal structures of the cross-reacting compounds sulfamethizole, N4-acetyl-SMX andsuccinimidyl-SMX were determined by x-ray diffraction aiming to explain their high cross-reactivity. These crystal structures are described for the first time. The quantification range of the ELISA is 0.82–63 µg/L. To verify our results, the SMX concentration in 20 environmental samples,including wastewater and surfacewater,was determined by ELISA and tandem mass spectrometry(MS/MS).A good Agreement of the measured SMX concentrations was found with average recoveries of 97–113%for the results of ELISA compared to LC-MS/MS. KW - X-Ray diffraction KW - ELISA KW - LC-MS/MS KW - Sulfamethoxazole PY - 2016 DO - https://doi.org/10.1016/j.talanta.2016.05.049 SN - 0039-9140 SN - 1873-3573 IS - 158 SP - 198 EP - 207 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-38530 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lima, D.L.D. A1 - Schneider, Rudolf A1 - Scherer, H.W. A1 - Duarte, A.C. A1 - Santos, E.B.H. A1 - Esteves, V.I. T1 - Sorption-desorption behavior of atrazine on soils subjected to different organic long-term amendments JF - Journal of agricultural and food chemistry N2 - Sorption of atrazine on soils subjected to three different organic amendments was measured using a batch equilibrium technique. A higher KF value (2.20 kg-1(mg L-1)-N) was obtained for soil fertilized with compost, which had a higher organic matter (OM) content. A correlation between the KFOC values and the percentage of aromatic carbon in OM was observed. The highest KFOC value was obtained for the soil with the highest aromatic content. Higher aromatic content results in higher hydrophobicity of OM, and hydrophobic interactions play a key role in binding of atrazine. On the other hand, the soil amended with farmyard manure had a higher content of carboxylic units, which could be responsible for hydrogen bonding between atrazine and OM. Dominance of hydrogen bonds compared to hydrophobic interactions can be responsible for the lower desorption capacity observed with the farmyard manure soil. The stronger hydrogen bonding can reduce the leaching of atrazine into drinking water resources and runoff to rivers and other surface waters. KW - Capillary electrophoresis KW - Atrazine KW - Sorption KW - Soil KW - Compost KW - Sewage sludge KW - Farmyard manure PY - 2010 DO - https://doi.org/10.1021/jf903937d SN - 0021-8561 SN - 1520-5118 VL - 58 IS - 5 SP - 3101 EP - 3106 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-21108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lima, D.L.D. A1 - Schneider, Rudolf A1 - Esteves, V.I. T1 - Sorption behavior of EE2 on soils subjected to different long-term organic amendments JF - The science of the total environment N2 - The transport and fate of hydrophobic organic contaminants in the environment involve complex phenomena that are influenced by many processes that include sorption by soil components. Sorption behavior of EE2 molecules onto different soil samples was studied and results correlated with the content and type of organic matter present. The highest Κ value, among all soils presented in this study, was obtained for soil fertilized with compost (1.22) which presented the highest organic carbon content. Also the sorption behavior depends greatly on the soil specific organic matter characteristics. A strong positive correlation was observed between aromatic and carboxylic units and ΚOC values. The results also suggested an association of the EE2 aromatic nuclei face to face with the surface and/or another EE2 molecule and also sorbent–sorbate interactions due to hydrogen or covalent bonding, likely to occur due to the presence of phenolic function at C-3 and hydroxyl function at C-17 of the EE2 molecules that can react with carboxylic functional groups of soil organic matter. The stronger EE2 sorbs to soil organic matter lower is the leaching into drinking water resources and runoff to rivers and surface water, minimizing its residual toxicity. KW - EE2 KW - Sorption KW - Soil KW - Deconvolution KW - Fluorescence PY - 2012 DO - https://doi.org/10.1016/j.scitotenv.2012.02.014 SN - 0048-9697 VL - 423 SP - 120 EP - 124 PB - Elsevier CY - Amsterdam AN - OPUS4-25739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Rudolf A1 - Almeida, Â. A1 - Calisto, V. A1 - Esteves, V. I. A1 - Soares, A. M. V. M. A1 - Freitas, R. T1 - Salinity-dependent impacts on the effects of antiepileptic and antihistaminic drugs in Ruditapes philippinarum JF - Science of the Total Environment N2 - In Coastal Systems, pollutants as pharmaceutical drugs exert changes from the molecular to the organism level in marine bivalves. Besides pollutants, Coastal Systems are prone to changes in environmental Parameters, as the alteration of salinity values because of Climate Change. Together, these Stressors (pharmaceutical drugs and salinity changes) can exert different threats than each Stressor acting individually; for example, salinity can change the physical-chemical properties of the drugs and/or the sensitivity of the organisms to them. However, limited Information is available on this subject, with variable results, and for this reason, this study aimed to evaluate the impacts of salinity changes (15,25 and 35) on the effects of the antiepileptic carbamazepine (CBZ, 1 (ig/L) and the antihistamine cetirizine (CTZ, 0.6 pg/L), when acting individually and combined (CBZ + CTZ), in the edible clam Ruditapes philippinarum. After 28 days ofexposure, drugs concentrations, bioconcentration factors and biochemical parameters, related to clam's metabolic caparity and oxidative stress were evaluated. The results showed that dams under low salinity suffered more changes in metabolic, antioxidant and biotransformation activities, in comparison with the remaining salinities under study. However, limited impacts were observed when comparing drug effects at low salinity. Indeed, it seemed that CTZ and CBZ + CTZ, under high salinity (salinity 35) were the worst exposure conditions for the dams, since they caused higher leveis of cellular damage. It Stands out that salinity changes altered the impact of pharmaceutical drugs on marine bivalves. KW - Muscheln KW - Salinität KW - Carbamazepin KW - Cetirizin KW - ELISA KW - Immunoassay KW - Antiepileptikum PY - 2022 DO - https://doi.org/10.1016/j.scitotenv.2021.150369 SN - 1879-1026 VL - 806 SP - 1 EP - 13 PB - Elsevier Science CY - Amsterdam AN - OPUS4-55561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Almeida, Â. A1 - Calisto, V. A1 - Esteves, V. I. A1 - Schneider, Rudolf A1 - Soares, A. M. V. M. A1 - Freitas, R. T1 - Responses of Ruditapes philippinarum to contamination by pharmaceutical drugs under ocean acidification scenario JF - Science of the total environment N2 - In coastal systems, organisms are exposed to amultitude of stressors whose interactions and effects are poorly studied. Pharmaceutical drugs and Climate Change consequences, such as lowered pH, are examples of stressors affecting marine organisms, as bivalves. Although a vast literature is available for the effects of these stressors when acting individually, very limited information exists on the impacts that the combination of both can have on marine bivalves. For this reason, this study aimed to evaluate the impacts of a simulated ocean acidification scenario (control pH, 8.0; lowered pH, pH 7.6) on the effects of the antiepileptic carbamazepine (CBZ, 1 μg/L) and the antihistamine cetirizine (CTZ, 0.6 μg/L), when acting individually and combined (CBZ + CTZ), on the edible clam Ruditapes philippinarum. After 28 days of exposure, drug concentrations, bioconcentration factors and biochemical parameters related to the clams' metabolic capacity and oxidative stress were evaluated. The results showed that R. philippinarum clams responded differently to pharmaceutical drugs depending on the pH tested, influencing both bioconcentration and biological responses. In general, drug combined treatments showed fewer impacts than drugs acting alone, and acidification seemed to activate at a higher extension the elimination processes that were not activated under control pH. Also, lowered pH per se exerted negative impacts (e.g., cellular damage) on R. philippinarum and the combination with pharmaceutical drugs did not enhance the toxicity. KW - Biosensoren KW - Immunoassay KW - ELISA KW - Vor-Ort-Analytik KW - Toxikologie KW - Pharmaceutical drugs KW - Bivalves KW - Ocean acidification KW - Biomarkers KW - Climate change PY - 2022 DO - https://doi.org/10.1016/j.scitotenv.2022.153591 SN - 1879-1026 VL - 824 SP - 1 EP - 11 PB - Elsevier Science CY - Amsterdam AN - OPUS4-55590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -