TY - JOUR A1 - Heilmann, V. A1 - Spitzer, S. A1 - Dufaud, O. A1 - Hohenberger, M. A1 - Jankuj, V. A1 - Prodan, M. A1 - Zakel, S. T1 - European round robin on safety characteristics of hybrid mixtures from vapors and dusts N2 - As part of the development of a new standard testing procedure, a round robin study was conducted by six participating laboratories. This study involved the measurement of both the maximum explosion pressure and the maximum rate of pressure rise for hybrid mixtures comprising dust and vapor. Measurements were performed using a modified 20L-sphere. The primary objective of this collaborative effort was to assess the accuracy, reliability, and consistency of analytical and measurement methods across multiple laboratories, thereby increasing confidence in the obtained results. The method and protocol were developed as part of the NEX-HYS project and documented in a technical specification by the German Institute for Standardization Registered Association (DIN). The study revealed that precise pre-ignition pressure rise (PIPR) measurements and the use of a leak-free test apparatus significantly influenced the results of the measured maximum explosion pressure and maximum pressure rise rate. KW - Hybrid Explosions KW - Safety characteristics KW - Round robin KW - 20L-sphere PY - 2024 DO - https://doi.org/10.1016/j.jlp.2024.105273 SN - 0950-4230 VL - 88 SP - 1 EP - 5 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-59534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spitzer, Stefan A1 - Askar, Enis A1 - Benke, Alexander A1 - Cloney, C. A1 - D’Hyon, S. A1 - Dufaud, O. A1 - Dyduch, Z. A1 - Gabel, D. A1 - Geoerg, P. A1 - Heilmann, V. A1 - Jankuj, V. A1 - Jian, W. A1 - Krause, U. A1 - Krietsch, Arne A1 - Mynarz, M. A1 - Norman, F. A1 - Skrinsky, J. A1 - Taveau, J. A1 - Vignes, A. A1 - Zakel, S. A1 - Zhong, S. T1 - 1st international round robin test on safety characteristics of hybrid mixtures N2 - There is no applicable existing standard for the determination of safety characteristics for hybrid mixtures. While developing a new standard in a joint research project in Germany first results from parameter studies led to a standard procedure that can be adopted by laboratories that are already testing dusts in the so called 20L-sphere with as little additional effort as necessary. In fact, one of the main objectives of this research project was to keep modifications and adjustments from the generally accepted dust testing procedures as easy and minimal as possible so as to limit potential deviations from one laboratory to another. In this first round robin test on hybrid mixtures ever, with methane as gas component and a specific corn starch as dust sample, the practicality of the whole procedure, the scattering of the results and the deviation between the testing apparatuses is investigated. This paper summarizes the experimental procedure adopted and objectives of the first round-robin phase involving three of the four original German companies, plus volunteering laboratories from Australia, Belgium, Czech Republic, France, Poland and P.R. China. The results will have an impact on the new standard and may lead to robust data for later simulation purposes. KW - Hybrid mixtures KW - 20L-sphere KW - Round robin test KW - Turbulent combustion PY - 2022 DO - https://doi.org/10.1016/j.jlp.2022.104947 SN - 0950-4230 VL - 81 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-56516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -