TY - JOUR A1 - Schlegel, Moritz-Caspar A1 - Russina, M. A1 - Günther, G. A1 - Grzimek, V. A1 - Gainov, R. A1 - Drescher, L. A1 - Kaulich, T. A1 - Graf, W. A1 - Urban, B. A1 - Daske, A. A1 - Grotjahn, K. A1 - Hellhammer, R. A1 - Buchert, G. A1 - Kutz, H. A1 - Rossa, L. A1 - Sauer, O.-P. A1 - Fromme, M. A1 - Wallacher, D. A1 - Kiefer, K. A1 - Klemke, B. A1 - Grimm, N. A1 - Gerischer, S. A1 - Tsapatsaris, N. A1 - Rolfs, K. T1 - Upgrade project NEAT02016 at Helmholtz Zentrum Berlin – What can be done on the medium power neutron source N2 - The neutron time-of-flight spectrometer NEAT has a long history of successful applications and is best suited to probe dynamic phenomena directly in the large time domain 10(-14) - 10(-10) s and on the length scale ranging from 0.05 to up to about 5 nm. To address user community needs for more powerful instrumental capabilities, a concept of the full upgrade of NEAT has been proposed. The upgrade started in 2010 after a rigorous internal and external selection process and resulted in 300-fold neutron count rate increase compared to NEAT01995. Combined with new instrumental and sample environmental capabilities the upgrade allows NEAT to maintain itself at the best world class level and provide an outstanding experimental tool for a broad range of scientific applications. The advanced features of the new instrument include an integrated guide-chopper system that delivers neutrons with flexible beam properties: either highly homogeneous beam with low divergence suitable for single crystals studies or "hot-spot" neutron distribution serving best small samples. Substantial increase of the detector angle coverage is achieved by using 416 He-3 position sensitive detectors. Placed at 3m from the sample, the detectors cover 20m(2) area and are equipped with modern electronics and DAQ using event recording techniques. The installation of hardware has been completed in June 2016 and on January 23, 2017 NEAT has welcomed its first regular users who took advantage of the high counting rate, broad available range of incoming neutron wavelengths and high flexibility of NEAT. Here we present details of NEAT upgrade, measured instrument characteristics and show first experimental results. KW - Neutron scattering KW - Neutron spectroscopy KW - Instrumentation KW - Time-of-flight neutron spectroscopy KW - Nanoscale dynamics PY - 2017 U6 - https://doi.org/10.1016/j.physb.2017.12.026 SN - 0921-4526 VL - 551 SP - 506 EP - 511 PB - Elsevier B.V. AN - OPUS4-43514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schiro, G. A1 - Müller, T. A1 - Verch, G. A1 - Sommerfeld, Thomas A1 - Mauch, Tatjana A1 - Koch, Matthias A1 - Grimm, V. A1 - Müller, M.E.H. T1 - The distribution of mycotoxins in a heterogeneous wheat field in relation to microclimate, fungal and bacterial abundance N2 - Aim: To observe the variation in accumulation of Fusarium and Alternaria mycotoxins across a topographically heterogeneous field and tested biotic (fungal and bacterial abundance) and abiotic (microclimate) parameters as explanatory variables. Methods and Results: We selected a wheat field characterized by a diversified topography, to be responsible for variations in productivity and in canopy-driven microclimate. Fusarium and Alternaria mycotoxins where quantified in wheat ears at three sampling dates between flowering and harvest at 40 points. Tenuazonic acid (TeA), alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN), deoxynivalenol (DON), zearalenone (ZEN) and deoxynivalenol-3-Glucoside (DON.3G) were quantified. In canopy temperature, air and soil humidity were recorded for each point with data-loggers. Fusarium spp. as trichothecene producers, Alternaria spp. and fungal abundances were assessed using qPCR. Pseudomonas fluorescens bacteria were quantified with a culture based method. We only found DON, DON.3G, TeA and TEN to be ubiquitous across the whole field, while AME, AOH and ZEN were only occasionally detected. Fusarium was more abundant in spots with high soil humidity, while Alternaria in warmer and drier spots. Mycotoxins correlated differently to the observed explanatory variables: positive correlations between DON accumulation, tri 5 gene and Fusarium abundance were clearly detected. The correlations among the others observed variables, such as microclimatic conditions, varied among the sampling dates. The results of statistical model identification do not exclude that species coexistence could influence mycotoxin production. Conclusions: Fusarium and Alternaria mycotoxins accumulation varies heavily across the field and the sampling dates, providing the realism of landscapescale studies. Mycotoxin concentrations appear to be partially explained by biotic and abiotic variables. Significance and Impact of the Study: We provide a useful experimental design and useful data for understanding the dynamics of mycotoxin biosynthesis in wheat. KW - Alternaria KW - Deoxynivalenol KW - Food Safety KW - Fusarium KW - Pseudomonas fluorescens KW - Tenuazonic acid PY - 2019 U6 - https://doi.org/10.1111/jam.14104 SN - 1365-2672 SN - 1364-5072 VL - 126 IS - 1 SP - 177 EP - 190 PB - Wiley AN - OPUS4-47161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -