TY - JOUR A1 - Ivanov, S. A1 - Artinov, Antoni A1 - Zemlyakov, E. A1 - Karpov, I. A1 - Rylov, S. A1 - Em, V. T1 - Spatiotemporal Evolution of Stress Field during Direct Laser Deposition of Multilayer Thin Wall of Ti-6Al-4V JF - Materials N2 - The present work seeks to extend the level of understanding of the stress field evolution during direct laser deposition (DLD) of a 3.2 mm thick multilayer wall of Ti-6Al-4V alloy by theoretical and experimental studies. The process conditions were close to the conditions used to produce large-sized structures by the DLD method, resulting in specimens having the same thermal history. A simulation procedure based on the implicit finite element method was developed for the theoretical study of the stress field evolution. The accuracy of the simulation was significantly improved by using experimentally obtained temperature-dependent mechanical properties of the DLD-processed Ti-6Al4V alloy. The residual stress field in the buildup was experimentally measured by neutron diffraction. The stress-free lattice parameter, which is decisive for the measured stresses, was determined using both a plane stress approach and a force-momentum balance. The influence of the inhomogeneity of the residual stress field on the accuracy of the experimental measurement and the validation of the simulation procedure are analyzed and discussed. Based on the numerical results it was found that the non-uniformity of the through-thickness stress distribution reaches a maximum in the central cross-section, while at the buildup ends the stresses are distributed almost uniformly. The components of the principal stresses are tensile at the buildup ends near the substrate. Furthermore, the calculated equivalent plastic strain reaches 5.9% near the buildup end, where the deposited layers are completed, while the plastic strain is practically equal to the experimentally measured ductility of the DLD-processed alloy, which is 6.2%. The experimentally measured residual stresses obtained by the force-momentum balance and the plane stress approach differ slightly from each other. KW - Direct laser deposition KW - Finite element simulation KW - Neutron diffraction KW - Residual stresses KW - Ti-6Al-4V KW - Mechanical properties PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542444 DO - https://doi.org/10.3390/ma15010263 VL - 15 IS - 263 SP - 1 EP - 20 PB - MDPI AN - OPUS4-54244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Teixeira, M.M. A1 - Moreno, L.F. A1 - Stielow, B.J. A1 - Muszewska, A. A1 - Hainaut, M. A1 - Gonzaga, L. A1 - Abouelleil, A. A1 - Patan, J.S.L. A1 - Priest, M. A1 - Souza, R. A1 - Ferreira, K.S. A1 - Zeng, Q. A1 - da Cunha, M.M.L. A1 - Gladki, A. A1 - Barker, B. A1 - Vicente, V.A. A1 - de Souza, E.M. A1 - Almeida, S. A1 - Henrissat, B. A1 - Vasconelos, A.T.R. A1 - Deng, S. A1 - Vogelmayr, H. A1 - Moussa, T.A.A. A1 - Gorbushina, Anna A1 - Felipe, M.S.S. A1 - Cuomo, C.A. A1 - de Hoog, G.S. T1 - Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota) JF - Studies in mycology N2 - The order Chaetothyriales (Pezizomycotina, Ascomycetes) harbours obligatorily melanised fungi and includes numerous etiologic agents of chromoblastomycosis, phaeohyphomycosis and other diseases of vertebrate hosts. Diseases range from mild cutaneous to fatal cerebral or disseminated infections and affect humans and cold-blooded animals globally. In addition, Chaetothyriales comprise species with aquatic, rock-inhabiting, ant-associated, and mycoparasitic life-styles, as well as species that tolerate toxic compounds, suggesting a high degree of versatile extremotolerance. To understand their biology and divergent niche occupation, we sequenced and annotated a set of 23 genomes of main the human opportunists within the Chaetothyriales as well as related environmental species. Our analyses included fungi with diverse life-styles, namely opportunistic pathogens and closely related saprobes, to identify genomic adaptations related to pathogenesis. Furthermore, ecological preferences of Chaetothyriales were analysed, in conjuncture with the order-level phylogeny based on conserved ribosomal genes. General characteristics, phylogenomic relationships, transposable elements, sex-related genes, protein family evolution, genes related to protein degradation (MEROPS), carbohydrate-active enzymes (CAZymes), melanin synthesis and secondary metabolism were investigated and compared between species. Genome assemblies varied from 25.81 Mb (Capronia coronata) to 43.03 Mb (Cladophialophora immunda). The bantiana-clade contained the highest number of predicted genes (12 817 on average) as well as larger genomes. We found a low content of mobile elements, with DNA transposons from Tc1/Mariner superfamily being the most abundant across analysed species. Additionally, we identified a reduction of carbohydrate degrading enzymes, specifically many of the Glycosyl Hydrolase (GH) class, while most of the Pectin Lyase (PL) genes were lost in etiological agents of chromoblastomycosis and phaeohyphomycosis. An expansion was found in protein degrading peptidase enzyme families S12 (serine-type D-Ala-D-Ala carboxypeptidases) and M38 (isoaspartyl dipeptidases). Based on genomic information, a wide range of abilities of melanin biosynthesis was revealed; genes related to metabolically distinct DHN, DOPA and pyomelanin pathways were identified. The MAT (MAting Type) locus and other sexrelated genes were recognized in all 23 black fungi. Members of the asexual genera Fonsecaea and Cladophialophora appear to be heterothallic with a single copy of either MAT-1-1 or MAT-1-2 in each individual. All Capronia species are homothallic as both MAT1-1 and MAT1-2 genes were found in each single genome. The genomic synteny of the MAT-locus flanking genes (SLA2-APN2-COX13) is not conserved in black fungi as is commonly observed in Eurotiomycetes, indicating a unique genomic context for MAT in those species. The heterokaryon (het) genes expansion associated with the low selective pressure at the MAT-locus suggests that a parasexual cycle may play an important role in generating diversity among those fungi. KW - Black yeast KW - Comparative genomics KW - Chaetothyriales KW - Ecology KW - Evolution KW - Herpotrichiellaceae KW - Phylogeny PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-408720 DO - https://doi.org/10.1016/j.simyco.2017.01.001 SN - 1872-9797 VL - 86 IS - 1 SP - 1 EP - 28 PB - Elsevier CY - Amsterdam AN - OPUS4-40872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -