TY - JOUR A1 - Hassenstein, Christian A1 - Heckel, Thomas A1 - Tomasson, Ingimar A1 - Vöhringer, Daniel A1 - Berendt, Torsten A1 - Wassermann, Jonas A1 - Prager, Jens T1 - Automated Wall Thickness Evaluation for Turbine Blades Using Robot-Guided Ultrasonic Array Imaging N2 - Nondestructive testing has become an essential part of the maintenance of modern gas turbine blades and vanes since it provides an increase in both safety against critical failure and efficiency of operation. Targeted repairs of the blade’s airfoil require localized wall thickness information. This information, however, is hard to obtain by nondestructive testing due to the complex shapes of surfaces, cavities, and material characteristics. To address this problem, we introduce an automated nondestructive testing system that scans the part using an immersed ultrasonic array probe guided by a robot arm. For imaging, we adopt a two-step, surface-adaptive Total Focusing Method (TFM) approach. For each test position, the TFM allows us to identify the outer surface, followed by calculating an adaptive image of the interior of the part, where the inner surface’s position and shape are obtained. To handle the large volumes of data, the surface features are automatically extracted from the TFM images using specialized image processing algorithms. Subsequently, the collection of 2D extracted surface data is merged and smoothed in 3D space to form the outer and inner surfaces, facilitating wall thickness evaluation. With this approach, representative zones on two gas turbine vanes were tested, and the reconstructed wall thickness values were evaluated via comparison with reference data from an optical scan. For the test zones on two turbine vanes, average errors ranging from 0.05 mm to 0.1 mm were identified, with a standard deviation of 0.06–0.16 mm. KW - Automation KW - Imaging KW - Sensors KW - Testing methodologies KW - Ultrasonics PY - 2024 U6 - https://doi.org/10.1115/1.4064998 SN - 2572-3901 VL - 7 SP - 021005-1 EP - 021005-12 PB - The American Society of Mechanical Engineers (ASME) CY - New York, USA AN - OPUS4-59851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -