TY - CONF A1 - Klingbeil, Dietmar A1 - Zerbst, Uwe A1 - Klinger, Christian ED - Yu, S. ED - Feng, X.-Q. T1 - Safe life and damage tolerance concepts of railway axles N2 - On July 9, 2008 a high speed train derailed in Cologne main Station, Germany at a low speed because an axle was broken. Fortunately, the derailment happened at a low speed so that nobody was injured. The reason for the broken axle was investigated and it turned out that most likely large inclusions located shortly undemeath the surface in a T-transition were the origin of the final crack. Basing on that result, a systematic investigation on existing safety assessments of railway axles was performed. This results in an analysis of the production process of axles and in a critical review of existing of existing assessments. Improvements and future developments are outlined. T2 - ICF13 - 13th International conference on fracture CY - Beijing, China DA - 16.06.2013 KW - Railway axles KW - Derailment KW - Service loading fatigue KW - Inclusions KW - Safety assessment PY - 2013 SN - 978-988-12265-2-5 SP - 1 EP - 10 AN - OPUS4-29651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Klinger, Christian A1 - Klingbeil, Dietmar T1 - Structural assessment of railway axles - A critical review N2 - The safety assessment of railway axles is based on a two-stage approach: fatigue strength design and regular inspections which, in terms of a general safety philosophy refer to safe-life and damage tolerance concepts. Starting with a recent failure case, a broken axle of a German high speed train, a discussion is presented on issues of both safety levels. These include ideas for finite life design, the treatment of in-service effects on the fatigue strength due to flying ballast damage and corrosion pits, the effect of corrosion on fatigue crack initiation and propagation, potential effects of non-metallic inclusions in steels, the way to detect them by quality control measures and reliability aspects of non-destructive testing with respect to the detection of fatigue cracks. Proposals are made how the safety level could be further improved. KW - Railway axles KW - Safe life design KW - Damage tolerance design KW - Non-destructive testing KW - Flying ballast impact KW - Corrosion KW - Non-metallic inclusions PY - 2013 UR - http://www.sciencedirect.com/science/article/pii/S1350630712002531 SN - 1350-6307 SN - 1873-1961 VL - 35 IS - Special issue on ICEFA V- Part 1 SP - 54 EP - 65 PB - Elsevier Science Publ. CY - Oxford AN - OPUS4-29715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -