TY - JOUR A1 - Duarte, Larissa A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Schönherr, J. A. A1 - Geilen, M. B. A1 - Klein, M. A1 - Oechsner, M. T1 - Recent developments in the determination of fatigue crack propagation thresholds JF - International Journal of Fatigue N2 - The impact of crack closure and environmental effects on the experimental determination of the fatigue crack propagation threshold is a major problem for the assessment of cyclically loaded components, especially at low stress ratios 𝑅. In this work, the influence of the experimental procedure and air humidity on d𝑎∕d𝑁 − 𝛥𝐾 data at different 𝑅 is discussed. Unlike the results at 𝑅 = −1, the threshold values obtained at 𝑅 ≈ 0.8, i.e. under negligible crack closure levels, show a very small scatter band regardless of the variation of the test parameters and environmental conditions. KW - Fatigue crack propagation threshold KW - Component assessment KW - Crack closure KW - Environmental effects KW - Testing parameters PY - 2022 DO - https://doi.org/10.1016/j.ijfatigue.2022.107131 SN - 0142-1123 VL - 164 SP - 1 EP - 15 PB - Elsevier Ltd. AN - OPUS4-55403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Bruno, Giovanni A1 - Buffière, J.-Y. A1 - Wegener, T. A1 - Niendorf, T. A1 - Wu, T. A1 - Zhang, X. A1 - Kashaev, N. A1 - Meneghetti, G. A1 - Hrabe, Nik A1 - Madia, Mauro A1 - Werner, Tiago A1 - Hilgenberg, Kai A1 - Koukolikova, M. A1 - Prochazka, R. A1 - Dzugan, J. A1 - Möller, B. A1 - Beretta, S. A1 - Evans, Alexander A1 - Wagener, R. A1 - Schnabel, K. T1 - Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges JF - Progress in materials science N2 - This article is an outcome of a workshop on Fatigue of Additive Manufactured Metallic Components jointly organized by the Federal Institute for Materials Research and Testing (BAM) Berlin, Germany and the National Institute of Standards and Technology (NIST) Boulder, CO, U.S.A. The aim of the workshop was a comprehensive discussion of the specific aspects of additively manufactured (AM) components in regard to failure under cyclic loading. Undoubtedly, a better understanding and the further development of approaches for damage tolerant component design of AM parts are among the most significant challenges currently facing the use of these new technologies. This article presents a thorough overview of the workshop discussions. It aims to provide a review of the parameters affecting the damage tolerance of AM parts with special emphasis on the process parameters intrinsic to the AM technologies, the resulting defects and residual stresses. Based on these aspects, concepts for damage tolerant component design for AM are reviewed and critically discussed. KW - Additive manufacturing KW - Fatigue loading KW - Component assessment KW - Damage tolerance KW - Defects KW - Residual stresses PY - 2021 DO - https://doi.org/10.1016/j.pmatsci.2021.100786 SN - 0079-6425 VL - 121 PB - Elsevier CY - Amsterdam AN - OPUS4-51937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Duarte, Larissa A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - The use of effective fatigue crack propagation data obtained at closure-free conditions for component assessment T2 - Proceedings of the 43rd International Conference on Materials Mechanics N2 - The knowledge of fatigue crack propagation data in terms of their effective values is important for a conservative and safe life assessment of components subjected to cyclic loading. To overcome issues related to the precise consideration of the crack-closure effects on experimental data obtained at small R ratios, closure-free data have been obtained at R ≈ 0.8 by different experimental procedures. The statistical analysis of the intrinsic fatigue crack propagation threshold obtained experimentally has shown a small data scatter and good agreement between procedures. When compared with effective values obtained from analytical corrections of closure-affected data, the data obtained at R ≈ 0.8 should lead to a conservative life estimation. T2 - 43rd International Conference on Materials Mechanics CY - Sani, Greece DA - 05.06.2022 KW - Component assessment KW - Effective crack propagation data KW - Experimental procedure KW - Crack-closure PY - 2022 SP - 104 EP - 108 AN - OPUS4-56851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -