TY - CONF A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Hensel, J. A1 - Nitschke-Pagel, T. T1 - Schweißeigenspannungen und Bauteilintegrität aus bruchmechanischer Sicht N2 - Der Vortrag thematisiert die Behandlung von Schweißeigenspannungen bei der Auslegung geschweißter Bauteile. Ausgehend von Fragen der Klassifizierung unterschiedlicher Typen von Eigenspannungen wird auf Fragen der Behandlung von Primär- und Sekundärspannungen, der Ermittlung und Aussagefähigkeit von Eigenspannungs-Tiefen-Profilen und der Stabilität der Eigenspannungen bei zyklischer Beanspruchung eingegangen. Neben der Auslegung auf Bruch wird die Beschreibung der Ermüdungsrissausbreitung bei Vorhandensein von Eigenspannungen diskutiert, wobei neben der klassischen Langrissbruchmechanik auch Besonderheiten der Kurzrissbruchmechanik angesprochen werden. T2 - DVM - Workshop "Eigenspannungen in der industriellen Praxis" CY - Berlin, Germany DA - 05.11.2019 KW - Schweißeigenspannungen KW - Primär- und Sekundärspannungen KW - Schweißeigenspannungs-Tiefen-Profile KW - Stabilität von Eigenspannungen KW - Kurz- und Langriss-Ermüdungsbruchmechanik PY - 2019 AN - OPUS4-49498 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe T1 - IBESS - an integral method for fracture mechanics-based determination of the fatigue strength of weldments N2 - The paper provides an overview on the results of a German cluster project on the use of fracture mechanics to the determination of the fatigue strength of weldments with fatigue cracks originating at the weld toes. The approach includes (a) a concept for short crack propagation for which the common K concept is not applicable and the crack closure effects are still being gradually build-up, (b) a method for determining fatigue life relevant initial crack sizes as they are needed in any fracture mechanics analysis and (c) multiple cracking and crack coalescence at load levels higher than the endurance limit. The analyses are stochastically performed. Both, the endurance limit as defined for 107 loading cycles and the finite life branch of the S-N curve are determined. Besides a brief introduction into the approach, a wide range of validation examples is presented. These comprise different weldment types (butt welds, cross joints and longitudinal stiffened plates), two steels of quite different strengths, different weld geometries due to different welding techniques (TIG, MAG), as-welded and stress relieved welds and different stress ratios varying from R = -1 to R = 0.5. T2 - Vortrag beim TWI (Welding Institute) CY - Great Abington, Cambridge, UK DA - 06.06.2017 KW - Fracture mechanics KW - S-N curve KW - Weldments PY - 2017 AN - OPUS4-43771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Vormwald, M. T1 - Schwingfestigkeit und Bruchmechanik N2 - Um bruchmechanisch Schwingfestigkeiten ermitteln zu können, sind einige Voraussetzungen erforderlich: (a) Das Wachstum sowohl langer als auch mechanisch und physikalisch kurzer Risse muss adäquat beschrieben werden. Das erfordert die Anwendung elastisch plastischer Konzepte zur Beschreibung der zyklischen Rissspitzenbeanspruchung sowie die Modellierung des graduellen Aufbaus der Rissschließeffekte im Kurzrissbereich. (b) Es müssen physikalisch sinnvolle Ausgangsrissgrößen für die bruchmechanische Analyse bestimmt werden. (c) Bei Spannungen oberhalb der Dauerfestigkeit respektive der Versagensspannung bei 107 Lastwechseln muss gegebenenfalls Mehrfachrisswachstum berücksichtigt werden. Der Vortrag diskutiert diese Punkte und zeigt Lösungswege auf. T2 - 49. Tagung des Arbeitskreises "Bruchmechanik und Bauteilsicherheit" CY - Mittweida, Germany DA - 14.02.2017 KW - Schwingfestigkeit KW - Bruchmechanik KW - Ausgangsriss KW - Mehrfachriss PY - 2017 VL - 249 SP - 77 EP - 92 PB - DVM (Deutscher Verband für Materialforschung und -prüfung) CY - Berlin AN - OPUS4-39227 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Madia, Mauro T1 - Schwingfestigkeit und Bruchmechanik N2 - Um bruchmechanisch Schwingfestigkeiten ermitteln zu können, sind einige Voraussetzungen erforderlich: (a) Das Wachstum sowohl langer als auch mechanisch und physikalisch kurzer Risse muss adäquat beschrieben werden. Das erfordert die Anwendung elastisch plastischer Konzepte zur Beschreibung der zyklischen Rissspitzenbeanspruchung sowie die Modellierung des graduellen Aufbaus der Rissschließeffekte im Kurzrissbereich. (b) Es müssen physikalisch sinnvolle Ausgangsrissgrößen für die bruchmechanische Analyse bestimmt werden. (c) Bei Spannungen oberhalb der Dauerfestigkeit respektive der Versagensspannung bei 107 Lastwechseln muss gegebenenfalls Mehrfachrisswachstum berücksichtigt werden. Der Vortrag diskutiert diese Punkte und zeigt Lösungswege auf. T2 - DVM-Jahrestagung Arbeitskreis "Bruchmechanik und Bauteilsicherheit" CY - Mittweida , Germany DA - 14.02.2017 KW - Schwingfestigkeit KW - Bruchmechanik KW - Ausgangsriss KW - Mehrfachriss PY - 2017 AN - OPUS4-39228 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Vormwald, M. T1 - Fatigue strength and fracture mechanics N2 - If fracture mechanics shall be applied to the total lifetime respectively the fatigue limit of components (within the meaning of the S-N curve approach) it has to address four challenges: (a) It has to adequately describe so-called short crack propagation, which cannot be based on the common long crack concepts for principle reasons. Since the crack size is in the order of the plastic zone size, the modelling of short crack propagation cannot be based on the common linear elastic Delta K concept. Instead, an elastic-plastic parameter such as the cyclic J integral has to be applied. A second point is that the crack closure concept has to be modified in that the crack opening stress is not a constant, crack size- independent parameter but shows a transient behaviour with increasing short crack size. (b) It has to provide a meaningful definition of the initial crack dimensions as the starting point for an S-N curve relevant (residual) lifetime analysis. This can be based either on the (statistical) size of material defects which can be treated as cracks or by the size of the crack which would arrest subsequent to early crack propagation, whatever is larger. (c) It has to cope with the problem of multiple cracks for load levels higher than the fatigue limit such as it occurs in many applications in the absence of very large initial defects. (d) This requires consequent statistical treatment taking into account variations in the local geometry of the area where crack initiation has to be expected as well as the scatter in the initial crack size and in the material data used for the analyses. T2 - 2nd International Conference on Structural Integrity CY - Funchal, Madeira, Portugal DA - 04.09.2017 KW - Fatigue strength KW - Fracture mechanics KW - Initial crack size KW - Short crack propagation KW - Multiple crack propagation PY - 2017 DO - https://doi.org/10.1016/j.prostr.2017.07.065 SN - 2452-3216 VL - 5 SP - 745 EP - 752 AN - OPUS4-42545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Vormwald, M. T1 - Fatigue strength and fracture mechanics N2 - If fracture mechanics shall be applied to the total lifetime respectively the fatigue limit of components (within the meaning of the S-N curve approach) it has to address four challenges: (a) It has to adequately describe so-called short crack propagation, which cannot be based on the common long crack concepts for principle reasons. Since the crack size is in the order of the plastic zone size, the modelling of short crack propagation cannot be based on the common linear elastic Delta K concept. Instead, an elastic-plastic parameter such as the cyclic J integral has to be applied. A second point is that the crack closure concept has to be modified in that the crack opening stress is not a constant, crack size- independent parameter but shows a transient behaviour with increasing short crack size. (b) It has to provide a meaningful definition of the initial crack dimensions as the starting point for an S-N curve relevant (residual) lifetime analysis. This can be based either on the (statistical) size of material defects which can be treated as cracks or by the size of the crack which would arrest subsequent to early crack propagation, whatever is larger. (c) It has to cope with the problem of multiple cracks for load levels higher than the fatigue limit such as it occurs in many applications in the absence of very large initial defects. (d) This requires consequent statistical treatment taking into account variations in the local geometry of the area where crack initiation has to be expected as well as the scatter in the initial crack size and in the material data used for the analyses. T2 - 2nd International Conference on Structural Integrity CY - Funchal, Madeira, Portugal DA - 04.09.2017 KW - Fatigue strength KW - Fracture mechanics KW - Initial crack size KW - Short crack propagation KW - Multiple crack propagation PY - 2017 AN - OPUS4-42546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Beier, T. A1 - Tchoffo Ngoula, D. T1 - Approximation of the crack driving force for cracks at notches under static and cyclic loading N2 - The work deals with the efficient calculation of the elastic-plastic crack driving force (J-integral for monotonic loading andΔJ-integral under cyclic loading) for short cracks at notches as essential parameter for the reliable static and fatigue assessment of notched structures. The J- or ΔJ-integral is calculated based on analytical solutions for stress intensity factors, estimated by means of well-known weight function solutions in the case of cracks under power-law stress distributions. A plasticity-correction function is applied to the stress intensity factors to obtain the final expression of the crack driving force. The comparison between analytical solutions and finite element calculations in case of cracks at the weld toe in welded joints shows good agreement. T2 - 2nd International Conference on Structural Integrity CY - Funchal, Madeira, Portugal DA - 04.09.2017 KW - Structural integrity KW - Fracture mechanics KW - Crack driving force KW - Notches PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-425577 DO - https://doi.org/10.1016/j.prostr.2017.07.111 SN - 2452-3216 VL - 5 SP - 875 EP - 882 PB - Elsevier B.V. AN - OPUS4-42557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe T1 - Lessons learned on FFS particulary of (short) fatigue crack propagation N2 - The presentation provides a brief overview on results obtained in the context of fracture mechanics based flaw assessment particularly in the context of short crack propagation. Background is the planned updating of international fitness-for-service procedures such as BS 7910. Specific topics addressed are the determination of the cyclic elastic-plastic crack driving force, the description of the gradual build-up of the crack closure phenomenon at the short crack stage, cyclic R curve analysis and residual stresses. T2 - 2nd "Mind the Gap" in FFS assessment procedures workshop CY - Bristol, United Kingdom DA - 19.10.2017 KW - Reference yield load KW - Cyclic J-integral KW - Crack closure phenomenon PY - 2017 AN - OPUS4-42559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe T1 - IBESS - Ergebnisse und Ausblick N2 - Der Vortrag bietet eine Übersicht über die im Rahmen des IBESS-Projektes entwickelte Methodik zur bruchmechanischen Ermittlung der Schwingfestigkeit von Schweißverbindungen. Schwerpunkte sind die Beschreibung des Wachstums kurzer Risse, die mit den klassischen linear-elastischen Bruchmechanik-Konzepten nicht möglich ist, die Ermittlung einer physikalisch sinnvollen Ausgangsrissgröße für das Bruchmechanik-Modell, die Ermittlung der Bauteildauerfestigkeit und des Zeitfestigkeitsastes diverser Schweißnahtgeometrien und eine Diskussion der Eigenspannungsproblematik. Die Ergebnisse werden mittels Validierungsbespielen illustriert. T2 - Sitzung des DVS FA 9 (Konstruktion und Festigkeit) CY - Braunschweig, Germany DA - 03.05.2017 KW - Bruchmechanik KW - IBESS KW - Schwingfestigkeit PY - 2017 AN - OPUS4-42563 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Beier, T. A1 - Schork, B. T1 - The IBESS model – Elements, realisation and validation N2 - The work presents the procedure developed within the German research project IBESS, which allows for the fracture mechanics-based prediction of the fatigue strength of welded joints under constant amplitude loading. Based on the experimental observations of the crucial failure mechanisms, the approach focuses on the short crack propagation, where elastic-plastic fracture mechanics and the build-up of closure effects must be considered as well as the variability of the local geometry at the weld toe and the modelling of multiple crack interaction. Analytical solutions are provided for the approximation of the through-thickness stress profiles at the weld toe and for the determination of the crack driving force in the form of a plasticity-corrected stress intensity factor range ∆K_p. Proposals for the determination of the initial crack size and the crack closure factor are also included. The approach is validated against a large number of experimental data, which comprises fatigue tests on individual cracks monitored by heat tinting and beach-marking techniques, as well as stress life curves. Three kinds of welded joints, two steels of significant different strengths and three stress ratios are considered. The results show that the procedure provides good estimations of the statistical distribution of the fatigue strength of welded joints both for the finite and infinite life regime. Furthermore, the predictions are compared with available benchmark data for structural steels. KW - Welded joints KW - Life prediction KW - Fatigue crack growth KW - Short cracks KW - Crack closure PY - 2018 DO - https://doi.org/10.1016/j.engfracmech.2017.08.033 SN - 0013-7944 SN - 1873-7315 VL - 198 SP - 171 EP - 208 PB - Elsevier AN - OPUS4-46852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Gerwien, Peter A1 - Kucharczyk, P. A1 - Münstermann, S. A1 - Schork, B. T1 - Fracture-mechanics-based prediction of the fatigue strength of weldments. Material aspects N2 - Any fracture mechanics based determination of the fatigue strength of weldments requires different input information such as the local weld geometry and material data of the areas the crack is passing through during its propagation. The latter is so far not a trivial task as the fatigue crack is usually initiated at the weld toe at the transition from the weld metal to the heat affected zone and it subsequently propagates through the different microstructures of the latter to eventually grow into the base material and to cause final fracture. This paper describes how the material input information has gained particularly for heat affected zone material by thermo-mechanically simulated material specimens for two steels of quite different static strength. The data comprise the cyclic stress-strain curve, the crack closure effect-corrected crack growth characteristics, long crack fatigue crack propagation thresholds, the dependency of the parameter on the crack length and monotonic fracture resistance. The substantial experimental effort was necessary for the validation exercises of the IBESS approach, however, within the scope of practical application more easily applicable estimating methods are required. For that purpose the paper provides a number of appropriate proposals in line with its check against the reference data from the elaborate analyses. KW - Heat affected zone KW - Cyclic stress-strain curve KW - Fatigue crack propagation KW - Fatigue crack propagation threshold KW - Fracture resistance PY - 2018 DO - https://doi.org/10.1016/j.engfracmech.2017.09.010 SN - 0013-7944 SN - 1873-7315 VL - 198 SP - 79 EP - 102 PB - Elsevier AN - OPUS4-46854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Maierhofer, J. A1 - Kolitsch, S. A1 - Gänser, H.-P. A1 - Pippan, R. T1 - The cyclic R-curve – Determination, problems, limitations and application N2 - The so-called cyclic R curve, i.e. the crack size dependence of the fatigue crack propagation threshold in the physically short crack regime, is a key parameter for bringing together fatigue strength and fracture mechanics concepts. Its adequate determination is of paramount importance. However, notwithstanding this relevance, no test guideline is available by now and only very few institutions have spent research effort on cyclic R curves so far. The aim of the present paper is to give an overview on the state-of-the-art. Besides an introduction into the basic principles, the discussion will concentrate on the experimental determination on the one hand and questions of its application on the other hand. KW - Cyclic R-curve KW - Fatigue crack propagation threshold KW - Crack closure mechanisms KW - Cyclic R-curve analysis KW - Kitagawa-Takahashi diagram PY - 2018 DO - https://doi.org/10.1016/j.engfracmech.2017.09.032 SN - 0013-7944 SN - 1873-7315 VL - 198 SP - 45 EP - 64 PB - Elsevier AN - OPUS4-46855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Tchoffo Ngoula, D. A1 - Beier, T. A1 - Vormwald, M. T1 - Cyclic J-integral: Numerical and analytical investigations for surface cracks in weldments N2 - The cyclic J-integral (∆J-integral) is a crack tip parameter of elastic-plastic fracture mechanics which can be used as governing parameter for the description of fatigue crack growth (FCG) in metallic structures. In this contribution, it is applied for modelling FCG in weldments. The ∆J-integral is determined by means of analytical approximation formulas as well as numerical methods. An analytical solution, which takes into account effects of the local ligament plasticity, was derived. This solution is based on well established methods such as R6, BS7910 and SINTAP which were modified for cyclic loading. It incorporates methods for the description of short crack closure behaviour as well as the well known analytical (long) crack closure function of Newman. A specific code was written to evaluate the ∆J-integral numerically in the course of finite element based crack growth simulations. The code was first validated for an infinite plate with centre crack by applying elastic and elastic-plastic material behaviour. Next, the ∆J-integral was calculated for cracks in various butt and cruciform welded joints. The results were compared with the results of the derived analytical approximation formula. A good accordance was achieved between the results. KW - Cyclic J-integral KW - Elastic-plastic fracture mechanics KW - Fatigue crack growth KW - Short cracks KW - Weldments PY - 2018 DO - https://doi.org/10.1016/j.engfracmech.2017.06.023 SN - 0013-7944 VL - 198 SP - 22 EP - 44 PB - Elsevier AN - OPUS4-46857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Schork, B. A1 - Kaffenberger, M. A1 - Oechsner, M. A1 - Kucharzcyk, P. A1 - Hensel, J. A1 - Bernhard, J. A1 - Tchuindjang, D. T1 - The effect of the local and global weld geometry as well as material defects on crack initiation and fatigue strength N2 - The paper provides an application of the IBESS approach to the investigation of the influence of various parameters of the global and local weld geometry as well as material defects on the fatigue strength of weldments. For this purpose, the global weld parameters, such as the weld toe radius, the flank angle, the excess weld metal, local secondary notches (in the present study as a measure of surface imperfections) and inclusions sizes have been determined as statistical distributions for different joint types and geometries and two steels of different strengths. The results are in line with literature data and reveal the potential of the theoretical approach to predict the correct trends. The combination with an advanced weld quality system has been demonstrated to be possible. KW - Weldments KW - Fatigue strength KW - Fracture mechanics KW - Weld geometry KW - Inclusions KW - Multiple crack initiation PY - 2018 DO - https://doi.org/10.1016/j.engfracmech.2017.07.001 SN - 0013-7944 SN - 1873-7315 VL - 198 SP - 103 EP - 122 PB - Elsevier AN - OPUS4-46858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Klinger, Christian A1 - Madia, Mauro T1 - Defekte als Ursache für das Versagen metallischer Komponenten N2 - Ein Defekt ist „eine Imperfektion …, für die in einer quantitativen Analyse gezeigt werden kann, dass sie Versagen verursacht hat, welches ohne die Imperfektion nicht aufgetreten wäre“. Defekte in diesem Sinn können einerseits Werkstoffimperfektionen wie nichtmetallische Einschlüsse, Poren und Porennester, Nichtdurchschweißungen oder Bereiche defekter Mikrostruktur, andererseits unbeabsichtige geometrische Imperfektionen wie Kratzer, Eindrücke, Korrosionsgrübchen, Einbrandkerben, zu große Oberflächenrauheit u.a. sein. Sie können in der Fertigung, im Betrieb oder auch bei der Wartung entstehen. Nicht jede Imperfektion ist ein Defekt im oben genannten Sinn. Entscheidend ist zumeist nicht, dass an ihr ein oder mehrere Risse initiiert werden, sondern dass wenigstens ein Riss wachstumsfähig bleibt und so innerhalb der projektierten Lebensdauer zum Bruch oder anderweitigem Versagen führt. Aufgrund des begrenzten Umfangs bleibt die vorliegen-de Übersicht beschränkt. T2 - Sitzung des DVK AK Betriebsfestigkeit CY - Stuttgart/Renningen, Germany DA - 26.09.2018 KW - Werstoff- und geometrische Imperfektion KW - Rissausbreitungsstadien KW - Rissarrest KW - Einschlüsse KW - Poren KW - Oberflächenschädigung KW - Rauheit PY - 2018 AN - OPUS4-46883 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Schork, B. A1 - Hensel, J. A1 - Kucharczyk, P. A1 - Tchoffo Ngoula, D. A1 - Tchuindjang, D. A1 - Bernhard, J. A1 - Beckmann, C. T1 - Fatigue and fracture of weldments - The IBESS approach for the determination of the fatigue life and strength of weldments by fracture mechanics analysis N2 - The acronym IBESS stands for "Integrale Bruchmechanische Ermittlung der Schwingfestigkeit von Schweißverbindungen" which, translated from German, means "integral fracture mechanics determination of the fatigue strength of welds". the method introduced in this study is the outcome of a German Research cluster in which eight partners were involved. A list of them is found at the end this study. The IBESS method is characterized by a number of partially novel aspects and elements of fracture mechanics applied to the evaluation of fatigue stength of welds. The most important ones are: (a) Determination of fatigue crack propagation for mechanically/physically short and long cracks. (b) Determination of an elastic-plastic crack driving force for the treatment of mechanically short cracks. To that purpose an analytical expression for the cyclic J-integral was developed and validated against finite element results. (c) The gradual build-up of the crack closure phenomenon is determined by using cyclic R-curves which describe the crack size dependency of the fatigue crack propagation threshold in the physically short crack growth regime. (d) A physically meaningful initial crack size is defined for total life consideration. It is based on a two-criteria approach. Based on a cyclic R-curve analysis, the crack size at crack arrest is determined as a lower bound. If, however, a pre-existing crack-like defect is larger than this, its dimensions define the initial crack size. (e) Multiple crack propagation at the weld toe is considered. (f) In conjunction with this, the variation of the weld toe geometry is considered in a stochastic model. (g) As a result, both the fatigue limit (defined for 107 loading cycles) and the finite life (high cycle) fatigue S-N curve are obtained statistically. (h) At various analysis steps, parametric equations have been developed which allow for analytical calculations instead of complete stochastic analyses based on finite elements which are unrealistic even at present. (i) The method has been validated with a large number of S-N curves including two materials, three weldment types with two geometries, each referring to differnt manufacturing technologies and the as-welded and stressrelieved state. (j) Althrough not finally solved, an extended discussion is provided on the issue of welding residual stresses including their redistribution under cyclic loading. (k) A number of simplifications is proposed at lower analyses levels which, however, partly lack complete validation by now. KW - Crack initation KW - Short crack KW - Fracture of weldments KW - IBESS PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-468853 UR - https://www.kriso.ee/db/9783030040727.html SN - 978-3-03004-072-7 SP - 1 EP - 189 PB - Springer-Verlag CY - Berlin AN - OPUS4-46885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Hensel, J. A1 - Nitschke-Pagel, T. A1 - Tchoffo Ngoula, D. A1 - Beier, T. T1 - Welding residual stresses as needed for the prediction of fatigue crack propagation and fatigue strength N2 - Welding residual stresses have an impact on the performance of welded structures, on their fracture resistance, their resistance against fatigue crack propagation and, most important, their fatigue strength and fatigue lifetime. The present paper provides an overview on the issue mainly from the point of view of the application of fracture mechanics to the determination of the fatigue strength as the topic of this Special issue. Besides own experimental and theoretical data a comprehensive discussion is provided in that context which includes the definition and interaction of short- and long-range (or reaction) residual stresses, the effect of cyclic mechanical loading and its treatment in fracture and fatigue analyses. KW - Welding residual stresses KW - Fracture KW - Fatigue crack propagation KW - Elastic follow-up PY - 2018 DO - https://doi.org/10.1016/j.engfracmech.2017.10.024 SN - 0013-7944 VL - 198 SP - 123 EP - 141 PB - Elsevier AN - OPUS4-46860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Vormwald, M. A1 - Beier, T. T1 - Fatigue strength and fracture mechanics - A general perspective N2 - Common fracture mechanics based fatigue considerations are usually limited to the residual lifetime determination of so-called long cracks. The extension of this concept to the total lifetime, as in the S-N curve approach, requires an adequate description of short crack propagation which cannot be based on the Delta K concept, and it must consider the crack closure phenomenon as well as its gradual build-up at the short crack stage. Further, it has to provide a meaningful definition of initial crack dimensions and a solution for the multiple crack problem at stress levels higher than the fatigue limit as it is specific for some configurations such as weldments. This paper aims at a discussion of all these points and offers possible solutions which are illustrated by examples taken from the German IBESS project on fracture mechanics based determination of the fatigue strength of weldments, the results of which will be discussed in more detail in this Special issue. KW - Fatigue strength KW - Endurance limit KW - Fracture mechanics KW - Short crack propagation KW - Multiple cracking KW - Weldments PY - 2018 DO - https://doi.org/10.1016/j.engfracmech.2017.04.030 SN - 0013-7944 SN - 1873-7315 VL - 198 SP - 2 EP - 23 PB - Elsevier AN - OPUS4-46862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe T1 - Fatigue strength and fracture mechanics of mechanical components N2 - The present paper provides a discussion on all these topics and it offers solutions for it. The authors present an analytical solution of a Delta J based crack driving force based on an R6 type approach but modified for cyclic loading. The gradual build-up of the crack closure effect is modelled by the so-called cyclic R curve which describes the crack size dependency of the fatigue crack propagation threshold in the short crack regime. It is explained how the cyclic R curve is experimentally determined and how it can be estimated by a modified Kitagawa-Takahashi approach. T2 - Proceedings of the 7th International Conference on Mechanics and Materials in Design T2 - 7th International Conference on Mechanics and Materials in Design CY - Albufeira, Portugal DA - 11.07.2017 KW - Fatigue strength KW - S-N curve KW - Crack propagation KW - J-integral KW - Residual lifetime PY - 2017 SN - 978-989-98832-7-7 SP - 507 EP - 508 AN - OPUS4-46863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe T1 - Die zyklische R-Kurve als Kenngröße des Kurzrisswachstums N2 - Unter der zyklischen R-Kurve versteht man die Abhängigkeit des Schwellenwertes gegen Ermüdungsrissausbreitung von der Risstiefe im Kurzrissbereich. Bei Spannungsverhältnissen R = omin/omax < ca. 0,7 erhöht sich der Schwellenwert AKltl ausgehend von einer intrinsischen, werkstoffspezifischen Untergrenze mit zunehmender Risstiefe, bis er einen risslängenunabhängigen Wert erreicht. Ursache ist der graduelle Aufbau unterschiedlicher Rissschließeffekte. Die besondere Bedeutung des Kurzrisswachtums allgemein und der zyklischen R-Kurve speziell besteht darin, dass sie ein physikalisches Bindeglied zwischen der konventionellen Schwingfestigkeit (Wöhlerkurve) und der Bruchmechanik repräsentieren. Der Beitrag befasst sich sowohl mit der experimentellen Ermittlung der zyklischen R-Kurve als auch mit ihrer Anwendung auf Rissarrest im Zusammenhang mit Schwingfestigkeitsbetrachtungen. Die experimentelle Ermittlung der zyklischen R-Kurve erfordert einen experimentellen Aufwand, der deutlich über den der Langrissbruchmechanik hinausgeht. Insbesondere im Anfangsbereich ist eine sehr genaue Messung der Risstiefe erforderlich, was eine Verbesserung etwa der konventionellen Potentialmethode erforderlich macht. Von wesentlicher Bedeutung ist auch, dass der Ausgangsriss vor Beginn des eigentlichen Versuchs keine Rissschließeffekte gesehen haben darf. Realisiert wird das durch eine vorgeschaltete Phase von sog. „Compression Pre-cracking“, d.h. durch Anschwingen komplett im Druckbereich. T2 - DVM Tagung der Werkstoffprüfung 2018 CY - Bad Neuenahr, Germany DA - 06.12.2018 KW - Kurzrissbruchmechanik KW - Zyklische R-Kurve KW - Rissschließphenomen KW - Rissarrest PY - 2018 AN - OPUS4-46874 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Madia, Mauro T1 - Bruch, Schwingfestigkeit und Ermüdungsrissfortschritt von Schweißverbindungen N2 - Die Präsentation diskutiert Besonderheiten von Schweißnähten bei der Bestimmung der Zähigkeit bei monotoner Belastung, bei der Ermittlung des zyklischen Rissfortschritts und bei der Ermittlung der Gesamtlebensdauer/Schwingfestigkeit mittels moderner bruchmechanischer Methoden. Besonderes Augenmerk liegt auf der Inhomogenität des Werkstoffs in den einzelnen Nahtbereichen, die sich statistisch (stochastische Verteilung von Gefügeschwachstellen) und systematisch (Effekte von Festigkeits-Mismatch) auswirkt. Als weiterer Faktor kommen Schweißeigenspannungen hinzu, bei denen für die bruchmechanische Analyse eine Fallunterscheidung in primäre und sekundäre Eigenspannungen vorgenommen werden muss. Diskstiert werden die Konsequenzen für die Zähigkeitsermittlung und die Bauteilbewertung. T2 - Sitzung AK "Prüfungs- und Prüfstandkonzepte für die NUtzfahrzeugbranche CY - Alpen/Niederrhein, Germany DA - 25.10.2018 KW - Schwingfestigkeit KW - Ermüdungsrissfortschritt KW - Schweißverbindungen PY - 2018 AN - OPUS4-46877 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Schork, B. A1 - Hensel, J. A1 - Kucharczyk, P. A1 - Ngoula, D. A1 - Tchuindjang, D. A1 - Bernhard, J. A1 - Beckmann, C. T1 - The IBESS approach for the determination of the fatigue life and strength of weldments by fracture mechanics analysis N2 - This book provides a comprehensive and thorough guide to those readers who are lost in the often-confusing context of weld fatigue. It presents straightforward information on the fracture mechanics and material background of weld fatigue, starting with fatigue crack initiation and short cracks, before moving on to long cracks, crack closure, crack growth and threshold, residual stress, stress concentration, the stress intensity factor, J-integral, multiple cracks, weld geometries and defects, microstructural parameters including HAZ, and cyclic stress-strain behavior. The book treats all of these essential and mutually interacting parameters using a unique form of analysis. KW - Fatigue crack propagation KW - Cyclic J-integral KW - Cyclic R-curve analysis KW - Fatigue S-N curve KW - HAZ PY - 2019 SN - 978-3-030-04072-7 SN - 978-3-030-04073-4 DO - https://doi.org/10.1007/978-3-030-04073-4 SP - 1 EP - 130 PB - Springer CY - Cham AN - OPUS4-47576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhu, Jiangchao A1 - Madia, Mauro A1 - Schurig, Michael A1 - Fedelich, Bernard A1 - Schlums, Hartmut A1 - Zerbst, Uwe T1 - Burst speed assessment of aero-engine turbine disk based on failure assessment diagram and global stability criterion N2 - Aero-engine turbine disks are safety-relevant components which are operated under high thermal and mechanical stress conditions. The actual part qualification and certification procedures make use of spin-tests conducted on production-similar disks. While these tests provide, on the one hand, a reliable definition of the critical conditions for real components, on the other hand they represent a relevant cost item for engine manufacturers. The aim of this work is to present two alternative burst speed assessment methods under development based on the Failure Assessment Diagram (FAD) and a global stability criterion, respectively. In the scope of the fracture mechanics assessment, the failure modes hoop-burst and rim-peeling are investigated with semicircular surface cracks modelled at the critical regions on the turbine disk. The comparison of the predicted critical rotational speed shows good agreement between the assessment methods. KW - Global stability criterion KW - Fracture mechanics KW - Burst KW - Turbine disk PY - 2023 DO - https://doi.org/10.1016/j.engfracmech.2022.109005 SN - 0013-7944 VL - 277 SP - 1 EP - 15 PB - Elsevier Ltd. AN - OPUS4-56736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hadley, I. A1 - Zerbst, Uwe A1 - Coules, H. A1 - James, P. A1 - Sharples, J. A1 - Bath, S. A1 - Larrosa, N. T1 - Knowledge gaps in fitness-for-service assessment procedures; summary of the 2nd ‘mind the gap’ workshop N2 - In 2015, the University of Manchester hosted a workshop (‘Mind the Gap’) aimed at identifying gaps in a number of structural integrity fitness-for-service procedures, including R5, R6, BS 7910 and API/ASME. The findings were subsequently summarised in a journal paper and shared with the relevant stakeholders. A second workshop, this time hosted by the University of Bristol in 2017, was intended to build on the findings of the earlier event, identifying which gaps had been filled, which remain and whether new ones have been identified in the meantime. ‘Mind the Gap 2’ was wide-ranging, including consideration of failure by fracture, fatigue crack growth, hightemperature creep and environmentally assisted crack growth, along with the use of innovative techniques to follow the progress of crack growth from the atomic to the macroscopic scale. A summary of the whole event is thus outside the scope of a single paper, so here we concentrate mainly on advances in fracture assessment, on the interface between inspection and ECA, and on how developments are being incorporated into structural integrity procedures. There is a particular emphasis on the energy transition in the UK, where the planned energy mix will include both nuclear power and offshore wind. KW - Flaw assessment procedures KW - Non-sharp defects KW - Flaw interaction KW - Codes and standards KW - Nuclear reactor systems PY - 2023 DO - https://doi.org/10.1016/j.ijpvp.2022.104883 SN - 0308-0161 VL - 202 SP - 1 EP - 14 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-56846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Duarte, Larissa A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - The use of effective fatigue crack propagation data obtained at closure-free conditions for component assessment N2 - The knowledge of fatigue crack propagation data in terms of their effective values is important for a conservative and safe life assessment of components subjected to cyclic loading. To overcome issues related to the precise consideration of the crack-closure effects on experimental data obtained at small R ratios, closure-free data have been obtained at R ≈ 0.8 by different experimental procedures. The statistical analysis of the intrinsic fatigue crack propagation threshold obtained experimentally has shown a small data scatter and good agreement between procedures. When compared with effective values obtained from analytical corrections of closure-affected data, the data obtained at R ≈ 0.8 should lead to a conservative life estimation. T2 - 43rd International Conference on Materials Mechanics CY - Sani, Greece DA - 05.06.2022 KW - Component assessment KW - Effective crack propagation data KW - Experimental procedure KW - Crack-closure PY - 2022 SP - 104 EP - 108 AN - OPUS4-56851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Duarte, Larissa A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Schönherr, J. A. T1 - Ermittlung des intrinsischen Schwellenwerts und dessen Validierung als Werkstoffparameter N2 - Die Anwendung bruchmechanischer Methoden zur schadenstoleranten Bauteilauslegung ist für zyklische Lasten im Bereich der Paris-Geraden Stand der Technik. Technisch relevant sind jedoch häufig geringere Lasten im Schwellenwertbereich der d𝑎/d𝑁-Δ𝐾-Kurve. Aufgrund des großen Einflusses von Rissschließeffekten ist dessen Bestimmung jedoch nicht nur aufwändig, sondern auch potenziell fehlerbehaftet. Die Bauteilauslegung erfolgt zweckmäßigerweise auf der Basis effektiver, d. h. rissschließkorrigierter Rissfortschrittsdaten. Von großer Bedeutung ist auch der intrinsische Schwellenwert, unterhalb dessen keine Risserweiterung mehr eintritt. In diesem Forschungsprojekt erfolgte eine Untersuchung des Einflusses verschiedener Prüfverfahren und Umgebungsbedingungen auf die Ermittlung des Schwellenwerts gegen Ermüdungsrissausbreitung Δ𝐾th. Es wurden statistisch abgesicherte Empfehlungen zur experimentellen Ermittlung des intrinsischen Schwellenwerts Δ𝐾th,eff abgeleitet. Dieser dient auch als Eingangsparameter einer weiterentwickelten Prozedur zur Bauteilauslegung auf der Basis bei einem Lastverhältnis von 𝑅 ≈ 0,8 ermittelter, effektiver, Rissfortschrittsdaten. Es zeigte sich, dass die bei einem Lastverhältnis von 𝑅 ≈ 0,8 in Laborluft bei höherer Prüffrequenzen (≥90 Hz) ermittelten Schwellenwerte eine konservative Abschätzung des intrinsischen Schwellenwerts erlaubten. Bei Lastverhältnissen 𝑅 ≪ 0,8 wurde ein teilweise stark ausgeprägter Einfluss extrinsischer Effekte auf das Rissfortschrittsverhalten festgestellt. Eine Untersuchung der Bruchflächen ergab Oxidschichtdicken in der Größenordnung mehrerer hundert Nanometer. Bei Reduktion der Prüffrequenz auf ≈55 Hz und Prüfung in feuchter Luft (60 % r.F. und 80 % r.F.) konnte auch bei 𝑅 = 0,8 Rissschließen beobachtet werden. Die weiterentwickelte Prozedur zur Bauteilauslegung auf Basis effektiver Rissfortschrittsdaten lieferte aber stets konservative Ergebnisse in einem tolerierbaren Fehlerbereich und ist deshalb zur Anwendung geeignet. Die im Projekt gewonnenen Erkenntnisse tragen zu einer robusten Bauteilauslegung auf bruchmechanischer Basis bei. Der stark reduzierte Versuchsumfang bei Nutzung effektiver Rissfortschrittsdaten gegenüber der Ermittlung von spannungsverhältnisabhängigen Rissfortschrittskurven beschleunigt und vereinfacht die Bauteilauslegung auf Basis bruchmechanischer Methoden. KW - Schwellenwert gegen Ermüdungsrissausbreitung KW - Einflussfaktoren auf Rissfortschrittsdaten KW - Bauteilauslegung KW - Rissschließeffekte PY - 2023 SN - 978-3-96780-151-4 SP - 1 EP - 190 PB - Forschungsvereinigung Stahlanwendung e. V. CY - Düsseldorf AN - OPUS4-58459 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Klinger, Christian A1 - Bettge, Dirk A1 - Murakami, Y. T1 - Defects as a root cause of fatigue failure of metallic components. III: Cavities, dents, corrosion pits, scratches N2 - This third part of the review on defects as root cause of fatigue failure addresses cavities (pores, micro-shrinkages, unmelted regions), defective microstructures and microcracks as material defects and defects due to local damage during manufacturing, service and maintenance such as dents, scratches and localized corrosion. In addition, damage due to contact fatigue and the effect of surface roughness are discussed in the context of fatigue failure. Also addressed is the competition between different kinds of defects in controlling the initiation and early growth of fatigue cracks. KW - Pores KW - Micro-shrinkages KW - Impact damage KW - Contact fatigue KW - Corrosion pits KW - Scratches PY - 2019 DO - https://doi.org/10.1016/j.engfailanal.2019.01.034 SN - 1350-6307 VL - 97 SP - 759 EP - 776 PB - Pergamon-Elsevier Science Ltd CY - Oxford, England AN - OPUS4-47373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Klinger, Christian A1 - Bettge, Dirk A1 - Murakami, Y. T1 - Defects as a root cause of fatigue failure of metallic components. I: Basic aspects N2 - According to the definition of the ASM handbook [1,3], a defect is "an imperfection. that can be shown to cause failure by a quantitative analysis and that would not have occurred in the absence of the imperfection". The topic of the present three-part review is a discussion of defects which can cause failure in cyclically loaded structures. The features discussed comprise material defects such as non-metallic inclusions, pores or micro-shrinkages, etc. and geometric defects such as surface roughness and secondary notches which have their origin in manufacturing, and defects such as surface damage due to scratches, impact events or contact fatigue as well as corrosion pits which arise in service. In this first part, the discussion is prefaced by an introduction to basic aspects which are essential for a deeper understanding of the characteristics and mechanisms how the defects influence fatigue crack initiation and propagation. These include the life cycle of a fatigue crack from initiation up to fracture, crack arrest, multiple crack initiation and coalescence, and the material and geometrical properties affecting these. KW - Defects KW - Fatigue crack propagation stages KW - Crack arrest KW - Multiple cracks PY - 2019 DO - https://doi.org/10.1016/j.engfailanal.2019.01.055 SN - 1350-6307 VL - 97 SP - 777 EP - 792 PB - Pergamon-Elsevier Science Ltd CY - Oxford, England AN - OPUS4-47372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Klinger, Christian A1 - Bettge, Dirk A1 - Murakami, Y. T1 - Defects as a root cause of fatigue failure of metallic components. II: Non-metallic inclusions N2 - This second part of the review on defects as root cause of fatigue failure comprises the origin, the nature and the effects of non-metallic inclusions. Topics addressed are the different kinds of inclusions formed during the manufacturing process, various types of mis-match causing local stresses and, as a consequence, fatigue crack initiation, and effects of characteristics such as size, morphology, localization, spatial distribution and orientation of the defects on the fatigue behavior. Methods for inclusion counting and sizing are discussed along with statistical aspects necessary to be considered when evaluating structural components. KW - Non-metallic inclusions KW - Mis-match KW - Inclusion size KW - Inclusion cluster KW - Statistics PY - 2019 DO - https://doi.org/10.1016/j.engfailanal.2019.01.054 SN - 1350-6307 VL - 98 SP - 228 EP - 239 PB - Elsevier Ltd. AN - OPUS4-47459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zhu, Jiangchao A1 - Madia, Mauro A1 - Schurig, Michael A1 - Fedelich, Bernard A1 - Schlums, H. A1 - Zerbst, Uwe T1 - Burst Behaviours Of Aero Engine Turbine Disk At Overspeed Conditions N2 - Aero-engine turbine disks are safety-relevant components which are operated under high thermal and mechanical stress conditions. The actual part qualification and certification procedures make use of spin-tests conducted on production-similar disks. The aim of this work is to present part of a fracture mechanics-based procedure under development which aims at replacing the tests on production-similar disks with lab tests on fracture mechanics specimens. The finite element simulation of the cracked disk considers the real thermal and mechanical loading conditions. In order to design a lab representative specimen, beside the crack driving force, expressed in terms of 𝐽-integral, also the constraint to plastic deformation e.g., stress triaxiality, at the crack-tip must be similar for the same crack in the specimen and in the disk. This has been achieved and as expected, both the highest 𝐽 -integral and constraint factor are calculated at the same location along the crack front for both disk and specimen. The results of the structural integrity assessment in the form of a Failure Assessment Diagram (FAD) show good agreement between designed specimen and disk both in terms of expected failure mode and value of the critical speed. In addition, probabilistic aspects are also considered in the calculations. T2 - 43rd Int. Conference on Materials Mechanics, June 5-10, 2022, Greece CY - Sani, Chalkidiki, Greece DA - 05.06.2022 KW - Structural integrity KW - Turbine disk KW - Fracture mechanics KW - Overspeed PY - 2022 SP - 1 EP - 13 AN - OPUS4-57279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Klinger, Christian A1 - Bettge, Dirk T1 - Defects as a root cause for fatigue failure of metallic components N2 - The Topic of the presentationis a discussion on defects which can cause failure in cyclically loaded metallic components. Although also touching Features such as material defects such as pores or micro-shrinkages, etc. and geometric defects such as surface roughness and secondary notches (which are not considered in the design process) which origin in manufacturing, and others the presentation concentrates on non-metallic inclusions. It is prefaced by an introduction to the life cycle of a fatigue crack from initiation up to fracture. Special emphasis is put on the fact that only cracks which are not arrested during one of their distinct Propagation stages can grow to a critical size. T2 - VIII. International Conference on Engineering Failure Analysis CY - Budapest, Ungarn DA - 08.06.2018 KW - Metallic components KW - Material defects KW - Micro-shrinkages PY - 2018 AN - OPUS4-46875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Zerbst, Uwe A1 - Hilgenberg, Kai ED - Richard, H. A. ED - Zipsner, T. ED - Schramm, B. T1 - Schadensentwicklung und Schadenstoleranz von SLM-gefertigten Strukturen N2 - Unterschiedliche Werkstoffeigenschaften reagieren auf jeweils spezifische Weise auf Gittertyp, Gefüge und Defekte. Für die schadenstolerante Betrachtung von Werkstoff und Bauteil ist das Verständnis dieser Zusammenhänge essentiell. Der Beitrag gibt mit Hinblick auf additiv gefertigte metallische Bauteile mittels Selective Laser Melting einen kurzen, keineswegs vollständigen Überblick über Faktoren, die die Steifigkeit, Festigkeit, Duktilität, Zähigkeit, Ermüdungsrissausbreitung und Schwingfestigkeit beeinflussen. Es wird aufgezeigt, wie die bruchmechanische Betrachtung zur Quantifizierung der Zusammenhänge beitragen kann. KW - Additive Fertigung KW - Selective Laser Melting (SLM) KW - Werkstoffeigenschaften KW - Schadenstoleranz KW - Bruchmechanik PY - 2017 SN - 978-3-658-17779-9 DO - https://doi.org/10.1007/978-3-658-17780-5 SP - 241 EP - 270 PB - Springer Vieweg CY - Wiesbaden AN - OPUS4-40162 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Bruno, Giovanni A1 - Buffière, J.-Y. A1 - Wegener, T. A1 - Niendorf, T. A1 - Wu, T. A1 - Zhang, X. A1 - Kashaev, N. A1 - Meneghetti, G. A1 - Hrabe, Nik A1 - Madia, Mauro A1 - Werner, Tiago A1 - Hilgenberg, Kai A1 - Koukolikova, M. A1 - Prochazka, R. A1 - Dzugan, J. A1 - Möller, B. A1 - Beretta, S. A1 - Evans, Alexander A1 - Wagener, R. A1 - Schnabel, K. T1 - Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges N2 - This article is an outcome of a workshop on Fatigue of Additive Manufactured Metallic Components jointly organized by the Federal Institute for Materials Research and Testing (BAM) Berlin, Germany and the National Institute of Standards and Technology (NIST) Boulder, CO, U.S.A. The aim of the workshop was a comprehensive discussion of the specific aspects of additively manufactured (AM) components in regard to failure under cyclic loading. Undoubtedly, a better understanding and the further development of approaches for damage tolerant component design of AM parts are among the most significant challenges currently facing the use of these new technologies. This article presents a thorough overview of the workshop discussions. It aims to provide a review of the parameters affecting the damage tolerance of AM parts with special emphasis on the process parameters intrinsic to the AM technologies, the resulting defects and residual stresses. Based on these aspects, concepts for damage tolerant component design for AM are reviewed and critically discussed. KW - Additive manufacturing KW - Fatigue loading KW - Component assessment KW - Damage tolerance KW - Defects KW - Residual stresses PY - 2021 DO - https://doi.org/10.1016/j.pmatsci.2021.100786 SN - 0079-6425 VL - 121 PB - Elsevier CY - Amsterdam AN - OPUS4-51937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Bruno, Giovanni A1 - Hilgenberg, Kai T1 - Towards a Methodology for Component Design of Metallic AM Parts Subjected to Cyclic Loading N2 - The safe fatigue design of metallic components fabricated by additive manufacturing (AM) is still a largely unsolved problem. This is primarily due to (a) a significant inhomogeneity of the material properties across the component; (b) defects such as porosity and lack of fusion as well as pronounced surface roughness of the asuilt components; and (c) residual stresses, which are very often present in the as‐built parts and need to be removed by post‐fabrication treatments. Such morphological and microstructural features are very different than in conventionally manufactured parts and play a much bigger role in determining the fatigue life. The above problems require specific solutions with respect to the identification of the critical (failure) sites in AM fabricated components. Moreover, the generation of representative test specimens characterized by similar temperature cycles needs to be guaranteed if one wants to reproducibly identify the critical sites and establish fatigue assessment methods taking into account the effect of defects on crack initiation and early propagation. The latter requires fracture mechanics‐based approaches which, unlike common methodologies, cover the specific characteristics of so‐called short fatigue cracks. This paper provides a discussion of all these aspects with special focus on components manufactured by laser powder bed fusion (L‐PBF). It shows how to adapt existing solutions, identifies fields where there are still gaps, and discusses proposals for potential improvement of the damage tolerance design of L‐PBF components KW - L‐PBF KW - Fatigue KW - Fracture KW - Defects PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525822 DO - https://doi.org/10.3390/met11050709 VL - 11 IS - 5 SP - 709 PB - MDPI CY - Basel AN - OPUS4-52582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Hilgenberg, Kai T1 - Damage development and damage tolerance of structures manufactured by selective laser melting - a review N2 - The additive manufacturing technology of Selective Laser Melting (SLM) experiences a rapid development within an increasing marked of quite different application fields. The properties of SLM materials and structures are influenced by a number of tech-nological parameters such as the metal powder (particle size, homogeneity, cleanliness), the laser tool (power, beam diameter, pulse lengths), the scanning operation (speed, sequence and orientation of melting paths), parameters of the over-all equipment (design and preheating of the base plate, currents and turbulence in the protective gas atmosphere) and, last not least, the hatching strategy including the build-up direction of the structure with respect to the loading direction of the component. For the perspective use of SLM structures as load carrying, safety-relevant components the knowledge of their mechanical properties is necessary. It is essential to understand these in the context of the manufacturing-related features and at the back-ground of the basic characteristics of metallic materials: crystal lattice, microstructure and material defects. The paper provides an overview on factors which affect the mechanical parameters stiffness, strength, ductility, toughness, fatigue crack propagation and fatigue strength in the context of selective laser melting. T2 - FDMD 2017 CY - Lecco, Italy DA - 19.09.2017 KW - Fatigue strength KW - Fracture mechanics KW - Initial crack size KW - Short crack propagation KW - Multiple crack propagation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-438511 DO - https://doi.org/10.1016/j.prostr.2017.11.071 SN - 2452-3216 VL - 7 SP - 141 EP - 148 PB - ScienceDirect CY - Lecco, Italy AN - OPUS4-43851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Hilgenberg, Kai T1 - Damage development and damage tolerance of structures manufactured by selective laser melting N2 - The additive manufacturing technology of Selective Laser Melting (SLM) experiences a rapid development within an increasing marked of quite different application fields. The properties of SLM materials and structures are influenced by a number of tech-nological parameters such as the metal powder (particle size, homogeneity, cleanliness), the laser tool (power, beam diameter, pulse lengths), the scanning operation (speed, sequence and orientation of melting paths), parameters of the over-all equipment (design and preheating of the base plate, currents and turbulence in the protective gas atmosphere) and, last not least, the hatching strategy including the build-up direction of the structure with respect to the loading direction of the component. For the perspective use of SLM structures as load carrying, safety-relevant components the knowledge of their mechanical properties is necessary. It is essential to understand these in the context of the manufacturing-related features and at the back-ground of the basic characteristics of metallic materials: crystal lattice, microstructure and material defects. The paper provides an overview on factors which affect the mechanical parameters stiffness, strength, ductility, toughness, fatigue crack propagation and fatigue strength in the context of selective laser melting. T2 - 3rd International Symposium on Fatigue Design an Material Defects, FDMD 2017 CY - Lecco, Italy DA - 19.09.2017 KW - Fatigue strength KW - Fracture mechanics KW - Initial crack size KW - Short crack propagation KW - Multiple crack propagation PY - 2017 AN - OPUS4-43853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blasón Gonzalez, Sergio A1 - Chaudry, Mohsin Ali A1 - Elorriaga, A. A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Llavori, I. A1 - Hilgenberg, Kai T1 - Design methodology of vessel produced by L PBF stainless steel using representative specimens N2 - This work presents the preliminary results of an ongoing project with a double objective: on the one hand, the characterisation of the mechanical properties against fatigue damage of an additively manufactured 316 stainless steel produced by laser powder bed-based (L-PBF) technology; on the other hand, the implementation of numerical simulation techniques able to predict the mechanical behaviour of the material in order to optimise and reduce the design costs of vessels used in the chemical sector. The current state of the work developed in this research framework allows showing the first batch of experimental results of crack propagation rate (FCGR) and high cycle fatigue (HCF) tests. The geometry of the vessels studied presents three clearly differentiated regions, either in terms of thickness (11-15 mm) or concerning the inclination of the walls to the direction of manufacturing (0º - 45º). The experimental campaign carried out so far allows identifying the differences in behaviour when comparing different extraction locations around the vessel. This is due to the variations in thermal cycles that the deposited material undergoes during the manufacturing process. Therefore, this causes variations in the microstructure which lead to changes in the response of the material. In this work, these differences are analysed qualitatively and quantitatively from the results of FCGR and HCF, thus allowing to locate the regions with the highest risk in terms of structural integrity against fatigue. This preliminary phase together with the numerical simulation of the additive manufacturing process are key to achieving a reliable description and modelling of the material. The latter will make it possible to address the priority aim of this project, involving the manufacture of independent samples whose properties are representative of the original material extracted from the reference vessels. It is, therefore, a comprehensive methodology for the design of additively manufactured components based on the localised fatigue mechanical properties of representative specimens. T2 - ECF23, European Conference on Fracture 2022 CY - Funchal, Portugal DA - 27.06.2022 KW - Additive manufacturing KW - Steel 316L KW - Fracture Mechanics PY - 2022 AN - OPUS4-55240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilgenberg, Kai A1 - Daum, Werner A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Bruno, Giovanni A1 - Heckel, Thomas A1 - Skrotzki, Birgit A1 - Zerbst, Uwe A1 - Kranzmann, Axel A1 - Bettge, Dirk A1 - Sommer, Konstantin A1 - Seeger, Stefan A1 - Nitsche, Michael A1 - Günster, Jens A1 - Evans, Alexander T1 - Additive manufacturing at the BAM: We focus on Safety N2 - In Germany, the Federal Institute for Materials Research and Testing (BAM) is addressing challenges in the implementation of additive manufacturing on the industrial landscape for safety-critical applications. KW - Process development KW - Additive Manufacturing KW - In-situ Process Monitoring KW - Non-destructive Materials KW - Characterisation KW - Safety KW - Fatigue KW - Environment KW - Standardisation PY - 2019 UR - https://static.asminternational.org/amp/201910/22/ SN - 0882-7958 VL - 177 IS - 7 SP - 22 EP - 26 PB - ASM International CY - Materials Park, OH, USA AN - OPUS4-49780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -