TY - JOUR A1 - Zerbst, Uwe A1 - Klinger, Christian T1 - Material defects as cause for the fatigue failure of metallic components JF - International Journal of Fatigue N2 - The paper provides an overview on material defects which may serve as fatigue crack initiation sites and can cause final fatigue failure of a component. These comprise nonmetallic inclusions in Steel and aluminum alloys, cavities such as pores, micro-shrinkages and un-welded regions in cast, sinter and additively manufactured alloys, graphite nodules, shrinkages and other items in modular cast iron, regions of defective microstructure, microcracks and secondary notches such as undercuts and surface roughness. Besides their origin, the effect and mechanisms on fatigue crack initiation and propagation are discussed. The considerations are proceeded and accompanied by a Brief discussion of some Basic aspects such as the stages of crack propagation along their length scale, the overcoming of crack arrest and the question when a secondary notch can be treated as a crack. KW - Material defects KW - Fatigue strength and life KW - Non-metallic inclusions KW - Pores KW - Shrinkages KW - Graphite modules KW - Surface roughness PY - 2019 DO - https://doi.org/10.1016/j.ijfatigue.2019.06.024 SN - 0142-1123 SN - 1879-3452 VL - 127 SP - 312 EP - 323 PB - Elsevier AN - OPUS4-49127 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Klinger, Christian A1 - Klingbeil, Dietmar T1 - Structural assessment of railway axles - A critical review JF - Engineering failure analysis N2 - The safety assessment of railway axles is based on a two-stage approach: fatigue strength design and regular inspections which, in terms of a general safety philosophy refer to safe-life and damage tolerance concepts. Starting with a recent failure case, a broken axle of a German high speed train, a discussion is presented on issues of both safety levels. These include ideas for finite life design, the treatment of in-service effects on the fatigue strength due to flying ballast damage and corrosion pits, the effect of corrosion on fatigue crack initiation and propagation, potential effects of non-metallic inclusions in steels, the way to detect them by quality control measures and reliability aspects of non-destructive testing with respect to the detection of fatigue cracks. Proposals are made how the safety level could be further improved. KW - Railway axles KW - Safe life design KW - Damage tolerance design KW - Non-destructive testing KW - Flying ballast impact KW - Corrosion KW - Non-metallic inclusions PY - 2013 UR - http://www.sciencedirect.com/science/article/pii/S1350630712002531 SN - 1350-6307 SN - 1873-1961 VL - 35 IS - Special issue on ICEFA V- Part 1 SP - 54 EP - 65 PB - Elsevier Science Publ. CY - Oxford AN - OPUS4-29715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Klinger, Christian A1 - Bettge, Dirk A1 - Murakami, Y. T1 - Defects as a root cause of fatigue failure of metallic components. II: Non-metallic inclusions JF - Engineering Failure Analysis N2 - This second part of the review on defects as root cause of fatigue failure comprises the origin, the nature and the effects of non-metallic inclusions. Topics addressed are the different kinds of inclusions formed during the manufacturing process, various types of mis-match causing local stresses and, as a consequence, fatigue crack initiation, and effects of characteristics such as size, morphology, localization, spatial distribution and orientation of the defects on the fatigue behavior. Methods for inclusion counting and sizing are discussed along with statistical aspects necessary to be considered when evaluating structural components. KW - Non-metallic inclusions KW - Mis-match KW - Inclusion size KW - Inclusion cluster KW - Statistics PY - 2019 DO - https://doi.org/10.1016/j.engfailanal.2019.01.054 SN - 1350-6307 VL - 98 SP - 228 EP - 239 PB - Elsevier Ltd. AN - OPUS4-47459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -