TY - JOUR A1 - Schönherr, J. A. A1 - Duarte, Larissa A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Geilen, M. B. A1 - Klein, M. A1 - Oechsner, M. T1 - Robust determination of fatigue crack propagation thresholds from crack growth data N2 - The robust determination of the threshold against fatigue crack propagation DKth is of paramount importance in fracture mechanics based fatigue assessment procedures. The standards ASTM E647 and ISO 12108 introduce operational definitions of DKth based on the crack propagation rate da/dN and suggest linear fits of logarithmic DK– da/dN test data to calculate DKth. Since these fits typically suffer from a poor representation of the actual curvature of the crack propagation curve, a method for evaluating DKth using a nonlinear function is proposed. It is shown that the proposed method reduces the artificial conservativeness induced by the evaluation method as well as the susceptibility to scatter in test data and the influence of test data density. KW - Fatigue crack propagation threshold KW - ISO 12108 KW - ASTM E647 KW - Data evaluation methods KW - Experimental determination PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552153 DO - https://doi.org/10.3390/ma15144737 SN - 1996-1944 VL - 15 IS - 14 SP - 1 EP - 21 PB - MDPI CY - Basel AN - OPUS4-55215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zhu, Jiangchao A1 - Madia, Mauro A1 - Schurig, Michael A1 - Fedelich, Bernard A1 - Schlums, H. A1 - Zerbst, Uwe T1 - Burst Behaviours Of Aero Engine Turbine Disk At Overspeed Conditions N2 - Aero-engine turbine disks are safety-relevant components which are operated under high thermal and mechanical stress conditions. The actual part qualification and certification procedures make use of spin-tests conducted on production-similar disks. The aim of this work is to present part of a fracture mechanics-based procedure under development which aims at replacing the tests on production-similar disks with lab tests on fracture mechanics specimens. The finite element simulation of the cracked disk considers the real thermal and mechanical loading conditions. In order to design a lab representative specimen, beside the crack driving force, expressed in terms of 𝐽-integral, also the constraint to plastic deformation e.g., stress triaxiality, at the crack-tip must be similar for the same crack in the specimen and in the disk. This has been achieved and as expected, both the highest 𝐽 -integral and constraint factor are calculated at the same location along the crack front for both disk and specimen. The results of the structural integrity assessment in the form of a Failure Assessment Diagram (FAD) show good agreement between designed specimen and disk both in terms of expected failure mode and value of the critical speed. In addition, probabilistic aspects are also considered in the calculations. T2 - 43rd Int. Conference on Materials Mechanics, June 5-10, 2022, Greece CY - Sani, Chalkidiki, Greece DA - 05.06.2022 KW - Structural integrity KW - Turbine disk KW - Fracture mechanics KW - Overspeed PY - 2022 SP - 1 EP - 13 AN - OPUS4-57279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -