TY - CONF A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Schork, Benjamin T1 - Fracture mechanics based determination of the fatigue strength of weldments T2 - Procedia Structural Integrity N2 - A fracture mechanics model which shall be applied to the fatigue strength determination of weldments has to focus on various aspects such as: (a) the description of mechanical and physical short fatigue crack extension which is characterised by yielding conditions which do not permit the application of the common ΔK concept and by the gradual build-up of the crack closure effect, (b) a consistent methodology for determining the initial crack size, (c) based on this, the determination of a fatigue limit, (d) the treatment of multiple crack propagation at load levels above this limit, (e) the variation of the local geometry along the weld toe, and (f) statistical effects.The paper gives alimited overview of the work the authors did in this field during the last years within the German project cluster IBESS. A model is presented and briefly discussed which covers the questions above. T2 - XV Portugese Conference on Fracture CY - Lissabon, Portugal DA - 10.02.2016 KW - Weldments KW - fatigue strength KW - fracture mechanics KW - fatigue crack propagation PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-361571 UR - http://www.sciencedirect.com/science/article/pii/S2452321616000044 DO - https://doi.org/doi:10.1016/j.prostr.2016.02.003 VL - 2016/1 SP - 10 EP - 17 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-36157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madia, Mauro A1 - Kiyak, Yusuf A1 - Zerbst, Uwe T1 - Extended parametric equations for weld toe stress concentration factors and through-thickness stress distributions in butt-welded plates subject to tensile and bending loading JF - Weld World N2 - Based on a large set of 2D finite element analyses, parametric equations for weld toe stress concentration factors and through-thickness stress profiles are provided for butt-welded plates. These cover Single-Vand Double-V joints subject to tensile and bending loading. Compared to the most widespread solutions in the literature, which have also been tested against the finite element data in this work, the application range is extended particularly with respect to the weld toe radius(0.1≤ρ≤4 mm)andangle(10 °≤α≤60 °). Furthermore, two values of excess weld metal are considered (h=0.75;2.5mm). The analyses are performed for a plate thickness of 10 mm. Besides the extended validity range, the proposed equations show also an improved accuracy compared to the existing solutions. KW - Butt welds KW - Weld toes KW - Stress analysis KW - Structures PY - 2016 DO - https://doi.org/10.1007/s40194-016-0377-x VL - 60 IS - 6 SP - 1247 EP - 1259 AN - OPUS4-37959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - S., Romano A1 - D., Manenti A1 - S., Beretta T1 - Semi-probabilistic method for residual lifetime of aluminothermic welded rails with foot cracks JF - Theoretical and Applied Fracture Mechanics N2 - One of the most frequent and dangerous failure modes in continuous welded rails is fatigue crack Propagation terminated by brittle fracture. Due to the brittleness of the weld material and HAZ and the scatter in its mechanical properties, a statistical approach is necessary. The paper deals with surface cracks at the foot base of aluminothermic welded rails, developing a probabilistic methodology for determining the day by day prospective failure probability. The investigations presented here comprise weld material characterization, simulation of fatigue crack propagation and finally the determination of the failure probability using the Monte Carlo method. The effect of various parameters, such as axle weight, Initial crack size, residual stresses, fatigue crack propagation threshold and date of inspection were analyzed. The results show that, independent of the date of the last inspection, almost any failure event happens in wintertime. This is in accordance with practical experience. However, from the proposed analysis it is evident that the main parameter controlling rail fracture is not only the minimum local temperature, but the temperature range over the whole year. Finally, the results are compared to the standard rail classification method. KW - Railway rails KW - Foot crack KW - Fatigue crack KW - Failure probability KW - Residual lifetime PY - 2016 DO - https://doi.org/10.1016/j.tafmec.2016.05.002 SN - 0167-8442 VL - 85 IS - Part B SP - 398 EP - 411 PB - Elsevier AN - OPUS4-38156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Heckel, Thomas A1 - Carboni, M. T1 - Non-destructive testing and fracture mechanics - A short discussion T2 - 42nd Annual review of progress in quantitative nondestructive evaluation conference (Proceedings) N2 - A discussion is provided on the relation between non-destructive testing (NDT) and fracture mechanics. The basic tasks behind this are to guarantee the safety of a component at a potential hazard loading event, to specify inspection intervals or, alternatively, of demands on NDT for a fixed inspection regime, to plan accompanying measures for cases of temporary continued operation of structures in which cracks have been detected, and, finally, fatigue strength considerations which take into account initial defects. T2 - 42nd Annual review of progress in quantitative nondestructive evaluation conference CY - Minneapolis, Minnesota, USA DA - 2015-07-26 KW - Zerstörungsfreie Prüfung KW - Schwingfestigkeit KW - Schadenstoleranz KW - Bruchmechanik KW - probability KW - damage tolerance KW - railway axles KW - inspection PY - 2016 SN - 978-0-7354-1353-5 DO - https://doi.org/10.1063/1.4940614 SN - 0094-243X VL - 1706 SP - 150002-1 EP - 150002-5 PB - AIP Publishing CY - Melville, New York, USA AN - OPUS4-33866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Vormwald, M. A1 - Pippan, R. A1 - Gänser, H.-P. A1 - Sarrazin-Baudoux, C. A1 - Madia, Mauro T1 - About the fatigue crack propagation threshold of metals as a design criterion - A review JF - Engineering fracture mechanics N2 - The fatigue crack propagation threshold ΔKth is of paramount importance for any kind of damage tolerant design, but in contrast to this importance, the determination and application of the parameter is not on the firm ground as previously assumed. The paper discusses questions of its experimental determination as well as of its application to components. In both fields, new questions have been raised with the potential to challenge or modify long-standing knowledge. Against this background, the paper is an attempt to systematize the established knowledge as well as questions and open issues. KW - Fatigue crack propagation threshold KW - Experimental determination KW - Influencing factors KW - Transferability to components PY - 2016 DO - https://doi.org/10.1016/j.engfracmech.2015.12.002 SN - 0013-7944 SN - 1873-7315 VL - 153 SP - 190 EP - 243 PB - Elsevier Science CY - Kidlington AN - OPUS4-35264 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - Application of the cyclic R-curve method in notch fatigue analysis JF - International Journal of Fatigue N2 - The paper deals with the prediction of the fatigue Limit of notched specimens. Some authors in the literature have shown that this issue can be solved by employing an approach based on critical distances, others used elastic fracture mechanics. In this paper the fatigue limit of notched specimens is given by the non-propagating condition of mechanically small surface cracks. According to the so-called cyclic R-curve method, the crack driving force of a growing small crack is compared to its resistance force, which incorporates the gradual build-up of crack closure. The fatigue limit is determined by that applied nominal stress, for which the tangency condition of crack driving and resistance force is satisfied. The approach has been modified to incorporate plasticity effects in the mechanically short crack Regime and it has been applied to a mild and a high-strength steel, in case of an infinite plate with circular hole under remote tensile stress. The method has been successfully applied to the evaluation of fatigue notch-sensitivity in case of surface roughness. KW - Notch fatigue KW - Notch sensitivity KW - Cyclic R-curve KW - Non-propagating cracks KW - Critical distance PY - 2016 DO - https://doi.org/10.1016/j.ijfatigue.2015.06.015 SN - 0142-1123 VL - 82 IS - 1 SP - 71 EP - 79 PB - Elsevier Ltd. CY - Oxford, UK AN - OPUS4-35298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -