TY - CONF A1 - Blasón Gonzalez, Sergio A1 - Chaudry, M. A1 - Elorriaga, A. A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Llavori, I. A1 - Hilgenberg, Kai T1 - Design methodology of vessel produced by L PBF stainless steel using representative specimens N2 - This work presents the preliminary results of an ongoing project with a double objective: on the one hand, the characterisation of the mechanical properties against fatigue damage of an additively manufactured 316 stainless steel produced by laser powder bed-based (L-PBF) technology; on the other hand, the implementation of numerical simulation techniques able to predict the mechanical behaviour of the material in order to optimise and reduce the design costs of vessels used in the chemical sector. The current state of the work developed in this research framework allows showing the first batch of experimental results of crack propagation rate (FCGR) and high cycle fatigue (HCF) tests. The geometry of the vessels studied presents three clearly differentiated regions, either in terms of thickness (11-15 mm) or concerning the inclination of the walls to the direction of manufacturing (0º - 45º). The experimental campaign carried out so far allows identifying the differences in behaviour when comparing different extraction locations around the vessel. This is due to the variations in thermal cycles that the deposited material undergoes during the manufacturing process. Therefore, this causes variations in the microstructure which lead to changes in the response of the material. In this work, these differences are analysed qualitatively and quantitatively from the results of FCGR and HCF, thus allowing to locate the regions with the highest risk in terms of structural integrity against fatigue. This preliminary phase together with the numerical simulation of the additive manufacturing process are key to achieving a reliable description and modelling of the material. The latter will make it possible to address the priority aim of this project, involving the manufacture of independent samples whose properties are representative of the original material extracted from the reference vessels. It is, therefore, a comprehensive methodology for the design of additively manufactured components based on the localised fatigue mechanical properties of representative specimens. T2 - ECF23, European Conference on Fracture 2022 CY - Funchal, Portugal DA - 27.06.2022 KW - Additive manufacturing KW - Steel 316L KW - Fracture Mechanics PY - 2022 AN - OPUS4-55240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe T1 - Fracture mechanics in failure analysis N2 - Starting from an introduction into important Basic questions of failure analysis and fracture mechanics, the author specifies what kind of questions in failure analysis can be effectively solved by fracture mechanics (and which can't). He illustrates his discussion with a number of case studies. Much more pronounced than in the design stage the benefit of fracture mechanics in failure analysis depends on ist accuracy. This is limited by both, intrinsic factors of the method and the availability and quality of the input information. The author discusses the various aspects and provides the participants with background information helpful for better understanding the prospects and limitations of fracture mechanics in failure analysis and the conditions of its application. T2 - ICEFA VII - International Conference of Engineering Failure Analysis CY - Leipzig, Germany DA - 03.07.2016 KW - Failure analysis PY - 2016 AN - OPUS4-38166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Hilgenberg, Kai T1 - Damage development and damage tolerance of structures manufactured by selective laser melting N2 - The additive manufacturing technology of Selective Laser Melting (SLM) experiences a rapid development within an increasing marked of quite different application fields. The properties of SLM materials and structures are influenced by a number of tech-nological parameters such as the metal powder (particle size, homogeneity, cleanliness), the laser tool (power, beam diameter, pulse lengths), the scanning operation (speed, sequence and orientation of melting paths), parameters of the over-all equipment (design and preheating of the base plate, currents and turbulence in the protective gas atmosphere) and, last not least, the hatching strategy including the build-up direction of the structure with respect to the loading direction of the component. For the perspective use of SLM structures as load carrying, safety-relevant components the knowledge of their mechanical properties is necessary. It is essential to understand these in the context of the manufacturing-related features and at the back-ground of the basic characteristics of metallic materials: crystal lattice, microstructure and material defects. The paper provides an overview on factors which affect the mechanical parameters stiffness, strength, ductility, toughness, fatigue crack propagation and fatigue strength in the context of selective laser melting. T2 - 3rd International Symposium on Fatigue Design an Material Defects, FDMD 2017 CY - Lecco, Italy DA - 19.09.2017 KW - Fatigue strength KW - Fracture mechanics KW - Initial crack size KW - Short crack propagation KW - Multiple crack propagation PY - 2017 AN - OPUS4-43853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Hildenberg, Kai A1 - Hrabe, N. T1 - Thoughts on damage tolerance and safe life design in metallic AM structures N2 - Der Vortrag bietet eine Diskussion zur Abschätzung des Schadenstoleranzverhaltens metallischer AM - Komponenten. Im Fokus stehen Probleme bei der Ermittlung repräsentativer Materialdaten, der Einfluss von Materialdefekten und Eigenspannungen. Ausgehend von derzeitigem Stand auf dem Gebiet werden Möglichkeiten der Schadenstoleranten Bauteileauslegung von AM diskutiert. N2 - The presentation provides a discussion and damage tolerant assessment of metallic AM components. In the focus are problems of the determination of representative material data, the effect of material defects and residual stresses. Starting with the actual state-of-the-art in the field, options and possibilities of a damage tolerant design for AM are discussed. T2 - BAM/NIST-Workshop on Fatigue of Additive Manufactured Metallic Components CY - Berlin, Germany DA - 16.05.2019 KW - Schadenstolerante Bauteilauslegung KW - Repräsentative Werkstoffeigenschaften KW - Defekte Eigenspannung KW - Damage tolerant component design KW - Representative material properties KW - Residual stresses PY - 2019 AN - OPUS4-48810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe T1 - IBESS - an integral method for fracture mechanics-based determination of the fatigue strength of weldments N2 - The paper provides an overview on the results of a German cluster project on the use of fracture mechanics to the determination of the fatigue strength of weldments with fatigue cracks originating at the weld toes. The approach includes (a) a concept for short crack propagation for which the common K concept is not applicable and the crack closure effects are still being gradually build-up, (b) a method for determining fatigue life relevant initial crack sizes as they are needed in any fracture mechanics analysis and (c) multiple cracking and crack coalescence at load levels higher than the endurance limit. The analyses are stochastically performed. Both, the endurance limit as defined for 107 loading cycles and the finite life branch of the S-N curve are determined. Besides a brief introduction into the approach, a wide range of validation examples is presented. These comprise different weldment types (butt welds, cross joints and longitudinal stiffened plates), two steels of quite different strengths, different weld geometries due to different welding techniques (TIG, MAG), as-welded and stress relieved welds and different stress ratios varying from R = -1 to R = 0.5. T2 - Vortrag beim TWI (Welding Institute) CY - Great Abington, Cambridge, UK DA - 06.06.2017 KW - Fracture mechanics KW - S-N curve KW - Weldments PY - 2017 AN - OPUS4-43771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Vormwald, M. T1 - Fatigue strength and fracture mechanics N2 - If fracture mechanics shall be applied to the total lifetime respectively the fatigue limit of components (within the meaning of the S-N curve approach) it has to address four challenges: (a) It has to adequately describe so-called short crack propagation, which cannot be based on the common long crack concepts for principle reasons. Since the crack size is in the order of the plastic zone size, the modelling of short crack propagation cannot be based on the common linear elastic Delta K concept. Instead, an elastic-plastic parameter such as the cyclic J integral has to be applied. A second point is that the crack closure concept has to be modified in that the crack opening stress is not a constant, crack size- independent parameter but shows a transient behaviour with increasing short crack size. (b) It has to provide a meaningful definition of the initial crack dimensions as the starting point for an S-N curve relevant (residual) lifetime analysis. This can be based either on the (statistical) size of material defects which can be treated as cracks or by the size of the crack which would arrest subsequent to early crack propagation, whatever is larger. (c) It has to cope with the problem of multiple cracks for load levels higher than the fatigue limit such as it occurs in many applications in the absence of very large initial defects. (d) This requires consequent statistical treatment taking into account variations in the local geometry of the area where crack initiation has to be expected as well as the scatter in the initial crack size and in the material data used for the analyses. T2 - 2nd International Conference on Structural Integrity CY - Funchal, Madeira, Portugal DA - 04.09.2017 KW - Fatigue strength KW - Fracture mechanics KW - Initial crack size KW - Short crack propagation KW - Multiple crack propagation PY - 2017 AN - OPUS4-42546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe T1 - Lessons learned on FFS particulary of (short) fatigue crack propagation N2 - The presentation provides a brief overview on results obtained in the context of fracture mechanics based flaw assessment particularly in the context of short crack propagation. Background is the planned updating of international fitness-for-service procedures such as BS 7910. Specific topics addressed are the determination of the cyclic elastic-plastic crack driving force, the description of the gradual build-up of the crack closure phenomenon at the short crack stage, cyclic R curve analysis and residual stresses. T2 - 2nd "Mind the Gap" in FFS assessment procedures workshop CY - Bristol, United Kingdom DA - 19.10.2017 KW - Reference yield load KW - Cyclic J-integral KW - Crack closure phenomenon PY - 2017 AN - OPUS4-42559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Klinger, Christian A1 - Bettge, Dirk T1 - Defects as a root cause for fatigue failure of metallic components N2 - The Topic of the presentationis a discussion on defects which can cause failure in cyclically loaded metallic components. Although also touching Features such as material defects such as pores or micro-shrinkages, etc. and geometric defects such as surface roughness and secondary notches (which are not considered in the design process) which origin in manufacturing, and others the presentation concentrates on non-metallic inclusions. It is prefaced by an introduction to the life cycle of a fatigue crack from initiation up to fracture. Special emphasis is put on the fact that only cracks which are not arrested during one of their distinct Propagation stages can grow to a critical size. T2 - VIII. International Conference on Engineering Failure Analysis CY - Budapest, Ungarn DA - 08.06.2018 KW - Metallic components KW - Material defects KW - Micro-shrinkages PY - 2018 AN - OPUS4-46875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -