TY - JOUR A1 - Zerbst, Uwe A1 - Hensel, J. A1 - Nitschke-Pagel, T. A1 - Tchoffo Ngoula, D. A1 - Beier, T. T1 - Welding residual stresses as needed for the prediction of fatigue crack propagation and fatigue strength JF - Engineering fracture mechanics N2 - Welding residual stresses have an impact on the performance of welded structures, on their fracture resistance, their resistance against fatigue crack propagation and, most important, their fatigue strength and fatigue lifetime. The present paper provides an overview on the issue mainly from the point of view of the application of fracture mechanics to the determination of the fatigue strength as the topic of this Special issue. Besides own experimental and theoretical data a comprehensive discussion is provided in that context which includes the definition and interaction of short- and long-range (or reaction) residual stresses, the effect of cyclic mechanical loading and its treatment in fracture and fatigue analyses. KW - Welding residual stresses KW - Fracture KW - Fatigue crack propagation KW - Elastic follow-up PY - 2018 DO - https://doi.org/10.1016/j.engfracmech.2017.10.024 SN - 0013-7944 VL - 198 SP - 123 EP - 141 PB - Elsevier AN - OPUS4-46860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Bruno, Giovanni A1 - Hilgenberg, Kai T1 - Towards a Methodology for Component Design of Metallic AM Parts Subjected to Cyclic Loading JF - Metals N2 - The safe fatigue design of metallic components fabricated by additive manufacturing (AM) is still a largely unsolved problem. This is primarily due to (a) a significant inhomogeneity of the material properties across the component; (b) defects such as porosity and lack of fusion as well as pronounced surface roughness of the asuilt components; and (c) residual stresses, which are very often present in the as‐built parts and need to be removed by post‐fabrication treatments. Such morphological and microstructural features are very different than in conventionally manufactured parts and play a much bigger role in determining the fatigue life. The above problems require specific solutions with respect to the identification of the critical (failure) sites in AM fabricated components. Moreover, the generation of representative test specimens characterized by similar temperature cycles needs to be guaranteed if one wants to reproducibly identify the critical sites and establish fatigue assessment methods taking into account the effect of defects on crack initiation and early propagation. The latter requires fracture mechanics‐based approaches which, unlike common methodologies, cover the specific characteristics of so‐called short fatigue cracks. This paper provides a discussion of all these aspects with special focus on components manufactured by laser powder bed fusion (L‐PBF). It shows how to adapt existing solutions, identifies fields where there are still gaps, and discusses proposals for potential improvement of the damage tolerance design of L‐PBF components KW - L‐PBF KW - Fatigue KW - Fracture KW - Defects PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525822 DO - https://doi.org/10.3390/met11050709 VL - 11 IS - 5 SP - 709 PB - MDPI CY - Basel AN - OPUS4-52582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Hildenberg, Kai A1 - Hrabe, N. T1 - Thoughts on damage tolerance and safe life design in metallic AM structures N2 - Der Vortrag bietet eine Diskussion zur Abschätzung des Schadenstoleranzverhaltens metallischer AM - Komponenten. Im Fokus stehen Probleme bei der Ermittlung repräsentativer Materialdaten, der Einfluss von Materialdefekten und Eigenspannungen. Ausgehend von derzeitigem Stand auf dem Gebiet werden Möglichkeiten der Schadenstoleranten Bauteileauslegung von AM diskutiert. N2 - The presentation provides a discussion and damage tolerant assessment of metallic AM components. In the focus are problems of the determination of representative material data, the effect of material defects and residual stresses. Starting with the actual state-of-the-art in the field, options and possibilities of a damage tolerant design for AM are discussed. T2 - BAM/NIST-Workshop on Fatigue of Additive Manufactured Metallic Components CY - Berlin, Germany DA - 16.05.2019 KW - Schadenstolerante Bauteilauslegung KW - Repräsentative Werkstoffeigenschaften KW - Defekte Eigenspannung KW - Damage tolerant component design KW - Representative material properties KW - Residual stresses PY - 2019 AN - OPUS4-48810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Duarte, Larissa A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - The use of effective fatigue crack propagation data obtained at closure-free conditions for component assessment T2 - Proceedings of the 43rd International Conference on Materials Mechanics N2 - The knowledge of fatigue crack propagation data in terms of their effective values is important for a conservative and safe life assessment of components subjected to cyclic loading. To overcome issues related to the precise consideration of the crack-closure effects on experimental data obtained at small R ratios, closure-free data have been obtained at R ≈ 0.8 by different experimental procedures. The statistical analysis of the intrinsic fatigue crack propagation threshold obtained experimentally has shown a small data scatter and good agreement between procedures. When compared with effective values obtained from analytical corrections of closure-affected data, the data obtained at R ≈ 0.8 should lead to a conservative life estimation. T2 - 43rd International Conference on Materials Mechanics CY - Sani, Greece DA - 05.06.2022 KW - Component assessment KW - Effective crack propagation data KW - Experimental procedure KW - Crack-closure PY - 2022 SP - 104 EP - 108 AN - OPUS4-56851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Beier, T. A1 - Schork, B. T1 - The IBESS model – Elements, realisation and validation JF - Engineering fracture mechanics N2 - The work presents the procedure developed within the German research project IBESS, which allows for the fracture mechanics-based prediction of the fatigue strength of welded joints under constant amplitude loading. Based on the experimental observations of the crucial failure mechanisms, the approach focuses on the short crack propagation, where elastic-plastic fracture mechanics and the build-up of closure effects must be considered as well as the variability of the local geometry at the weld toe and the modelling of multiple crack interaction. Analytical solutions are provided for the approximation of the through-thickness stress profiles at the weld toe and for the determination of the crack driving force in the form of a plasticity-corrected stress intensity factor range ∆K_p. Proposals for the determination of the initial crack size and the crack closure factor are also included. The approach is validated against a large number of experimental data, which comprises fatigue tests on individual cracks monitored by heat tinting and beach-marking techniques, as well as stress life curves. Three kinds of welded joints, two steels of significant different strengths and three stress ratios are considered. The results show that the procedure provides good estimations of the statistical distribution of the fatigue strength of welded joints both for the finite and infinite life regime. Furthermore, the predictions are compared with available benchmark data for structural steels. KW - Welded joints KW - Life prediction KW - Fatigue crack growth KW - Short cracks KW - Crack closure PY - 2018 DO - https://doi.org/10.1016/j.engfracmech.2017.08.033 SN - 0013-7944 SN - 1873-7315 VL - 198 SP - 171 EP - 208 PB - Elsevier AN - OPUS4-46852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Schork, B. A1 - Hensel, J. A1 - Kucharczyk, P. A1 - Ngoula, D. A1 - Tchuindjang, D. A1 - Bernhard, J. A1 - Beckmann, C. T1 - The IBESS approach for the determination of the fatigue life and strength of weldments by fracture mechanics analysis T3 - Fatigue and Fracture of Weldments N2 - This book provides a comprehensive and thorough guide to those readers who are lost in the often-confusing context of weld fatigue. It presents straightforward information on the fracture mechanics and material background of weld fatigue, starting with fatigue crack initiation and short cracks, before moving on to long cracks, crack closure, crack growth and threshold, residual stress, stress concentration, the stress intensity factor, J-integral, multiple cracks, weld geometries and defects, microstructural parameters including HAZ, and cyclic stress-strain behavior. The book treats all of these essential and mutually interacting parameters using a unique form of analysis. KW - Fatigue crack propagation KW - Cyclic J-integral KW - Cyclic R-curve analysis KW - Fatigue S-N curve KW - HAZ PY - 2019 SN - 978-3-030-04072-7 SN - 978-3-030-04073-4 DO - https://doi.org/10.1007/978-3-030-04073-4 SP - 1 EP - 130 PB - Springer CY - Cham AN - OPUS4-47576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Schork, B. A1 - Kaffenberger, M. A1 - Oechsner, M. A1 - Kucharzcyk, P. A1 - Hensel, J. A1 - Bernhard, J. A1 - Tchuindjang, D. T1 - The effect of the local and global weld geometry as well as material defects on crack initiation and fatigue strength JF - Engineering Fracture Mechanics N2 - The paper provides an application of the IBESS approach to the investigation of the influence of various parameters of the global and local weld geometry as well as material defects on the fatigue strength of weldments. For this purpose, the global weld parameters, such as the weld toe radius, the flank angle, the excess weld metal, local secondary notches (in the present study as a measure of surface imperfections) and inclusions sizes have been determined as statistical distributions for different joint types and geometries and two steels of different strengths. The results are in line with literature data and reveal the potential of the theoretical approach to predict the correct trends. The combination with an advanced weld quality system has been demonstrated to be possible. KW - Weldments KW - Fatigue strength KW - Fracture mechanics KW - Weld geometry KW - Inclusions KW - Multiple crack initiation PY - 2018 DO - https://doi.org/10.1016/j.engfracmech.2017.07.001 SN - 0013-7944 SN - 1873-7315 VL - 198 SP - 103 EP - 122 PB - Elsevier AN - OPUS4-46858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duarte, Larissa A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - The effect of the environmental conditions on the threshold against fatigue crack propagation JF - Procedia Structutal Integrity N2 - The threshold against fatigue crack propagation (ΔKth) is a crucial parameter for the damage tolerance assessment of engineering components subjected to cyclic loading and it is composed by two distinct components, one intrinsic, dependent on the elastic material properties and the lattice type, and one extrinsic, related to the occurrence of crack closure effects. An important issue is that several factors can influence ΔKth and, in general, the fatigue crack propagation behavior. In this work, the influence of the experimental procedure, air humidity, stress ratio and test frequency on da/dN-ΔK data has been investigated. Results are discussed with their potential causes and consequences on the calculations of the residual lifetime. KW - Fatigue crack propagation threshold KW - Crack closure effect KW - Experimental procedure KW - Environmental conditions PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544905 DO - https://doi.org/10.1016/j.prostr.2022.03.030 VL - 38 SP - 292 EP - 299 PB - Elsevier B.V. AN - OPUS4-54490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Maierhofer, J. A1 - Kolitsch, S. A1 - Gänser, H.-P. A1 - Pippan, R. T1 - The cyclic R-curve – Determination, problems, limitations and application JF - Engineering fracture mechanics N2 - The so-called cyclic R curve, i.e. the crack size dependence of the fatigue crack propagation threshold in the physically short crack regime, is a key parameter for bringing together fatigue strength and fracture mechanics concepts. Its adequate determination is of paramount importance. However, notwithstanding this relevance, no test guideline is available by now and only very few institutions have spent research effort on cyclic R curves so far. The aim of the present paper is to give an overview on the state-of-the-art. Besides an introduction into the basic principles, the discussion will concentrate on the experimental determination on the one hand and questions of its application on the other hand. KW - Cyclic R-curve KW - Fatigue crack propagation threshold KW - Crack closure mechanisms KW - Cyclic R-curve analysis KW - Kitagawa-Takahashi diagram PY - 2018 DO - https://doi.org/10.1016/j.engfracmech.2017.09.032 SN - 0013-7944 SN - 1873-7315 VL - 198 SP - 45 EP - 64 PB - Elsevier AN - OPUS4-46855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Zerbst, Uwe A1 - Madia, Mauro ED - Yadroitsev, I. ED - Yadroitsava, I. ED - Du Plessies, A. ED - McDonald, E. T1 - Structural integrity II: fatigue properties T2 - Fundamentals of laser powder bed fusion of metals N2 - If a component is cyclically loaded, its load carrying capacity is considerably lower than in the monotonic loading case. This general observation applies in particular to L-PBF parts. The causes of this are mainly material defects such as pores and unwelded regions (Chapter 8) and a pronounced surface roughness in the as-built condition (Chapter 9). In addition, effects due to the anisotropy of the microstructure (Chapter 6) and a complex residual stress pattern (Chapter 7) play an important role. A consequence is that common strategies of fatigue assessment cannot be transferred to L-PBF applications without modifications. Due to the inhomogeneity of the material, the determination of representative material properties and the transfer to the component is a problem, and this is also the case with regard to the consideration of defects, surface roughness and residual stresses. The chapter gives a brief introduction to these problem areas. KW - Fatigue crack propagation stagesdefects KW - Fatigue strength KW - Fatigue life KW - Fracture mechanics PY - 2021 SN - 978-0-12-824090-8 DO - https://doi.org/10.1016/B978-0-12-824090-8.00015-9 SP - 377 EP - 394 PB - Elsevier Inc. CY - Amsterdam ET - 1 AN - OPUS4-52854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Klinger, Christian A1 - Klingbeil, Dietmar T1 - Structural assessment of railway axles - A critical review JF - Engineering failure analysis N2 - The safety assessment of railway axles is based on a two-stage approach: fatigue strength design and regular inspections which, in terms of a general safety philosophy refer to safe-life and damage tolerance concepts. Starting with a recent failure case, a broken axle of a German high speed train, a discussion is presented on issues of both safety levels. These include ideas for finite life design, the treatment of in-service effects on the fatigue strength due to flying ballast damage and corrosion pits, the effect of corrosion on fatigue crack initiation and propagation, potential effects of non-metallic inclusions in steels, the way to detect them by quality control measures and reliability aspects of non-destructive testing with respect to the detection of fatigue cracks. Proposals are made how the safety level could be further improved. KW - Railway axles KW - Safe life design KW - Damage tolerance design KW - Non-destructive testing KW - Flying ballast impact KW - Corrosion KW - Non-metallic inclusions PY - 2013 UR - http://www.sciencedirect.com/science/article/pii/S1350630712002531 SN - 1350-6307 SN - 1873-1961 VL - 35 IS - Special issue on ICEFA V- Part 1 SP - 54 EP - 65 PB - Elsevier Science Publ. CY - Oxford AN - OPUS4-29715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madia, Mauro A1 - Beretta, S. A1 - Schödel, M. A1 - Zerbst, Uwe A1 - Luke, M. A1 - Varfolomeyev, I. T1 - Stress intensity factor solutions for cracks in railway axles JF - Engineering fracture mechanics N2 - The aim of this paper is a collection of stress intensity factor solutions for cracks in railway axle geometries which the authors of the present special issue developed and/or used for damage tolerance analyses. These solutions comprise closed form analytical as well as tabled geometry functions and they refer to solid as well as hollow axles and various crack sites such as the T- and V-notch and the axle body. KW - Railway axles KW - Stress intensity factor PY - 2011 DO - https://doi.org/10.1016/j.engfracmech.2010.03.019 SN - 0013-7944 SN - 1873-7315 VL - 78 IS - 5 SP - 764 EP - 792 PB - Elsevier Science CY - Kidlington AN - OPUS4-22495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Kiyak, Yusuf A1 - Breidung, Marc A1 - Baer, Wolfram A1 - Küppers, M. ED - Madia, Mauro T1 - Stiffness/constraint effects in analytical flaw assessment - A technical note JF - Engineering Fracture Mechanics N2 - Using the case study of a fail-safe design criterion for a steering knuckle of a commercial vehicle, the effect of stiffness/constraint on the crack driving force in the component is discussed. The problem arises when assessment procedures such as R6, BS 7910 or SINTAP/FITNET are applied in conjunction with substitute geometries for determining the model parameters K-factor and limit load (or a substitute for the latter), as it is common practice. In the example, the conservatism was so pronounced that this procedure was in fact unusable. A way out could be the finite element-based determination of the model parameters and their use in the analytical framework. This procedure is useful and effective if the finite element-based calculations are used in parameter sensitivity analyses. KW - Fail-safe design KW - Fracture resistance KW - Fracture assessment KW - Stiffness KW - Constraint PY - 2022 DO - https://doi.org/10.1016/j.engfracmech.2022.108728 SN - 0013-7944 IS - 273 SP - 1 EP - 15 PB - Elsevier Science CY - Kidlington AN - OPUS4-55544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bergant, M. A1 - Werner, Tiago A1 - Madia, Mauro A1 - Yawny, A. A1 - Zerbst, Uwe T1 - Short crack propagation analysis and fatigue strength assessment of additively manufactured materials: An application to AISI 316L JF - International Journal of Fatigue N2 - This paper presents the application of short crack propagation models based on the cyclic R-curve for assessing the fatigue strength of additively manufactured (AM) materials containing fabrication defects. Chapetti’s and IBESS models were implemented in combination with Murakami’s √area parameter, considering recently published data on laser powder bed fusion processed AISI 316L stainless steels. Estimated S-N curves and Kitagawa-Takahashi diagrams predict fairly well the experimental data, especially the origin of the failure from internal or surface defects. These results provide an indication that the methods based on the cyclic R-curve constitute suitable tools for fatigue behavior assessment of AM materials. KW - AM 316L stainless steel KW - Cyclic R-curve KW - Chapetti’s and IBESS model KW - S-N curve KW - Kitagawa-Takahashi diagram PY - 2021 DO - https://doi.org/10.1016/j.ijfatigue.2021.106396 VL - 151 PB - Elsevier Ltd. AN - OPUS4-53082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - S., Romano A1 - D., Manenti A1 - S., Beretta T1 - Semi-probabilistic method for residual lifetime of aluminothermic welded rails with foot cracks JF - Theoretical and Applied Fracture Mechanics N2 - One of the most frequent and dangerous failure modes in continuous welded rails is fatigue crack Propagation terminated by brittle fracture. Due to the brittleness of the weld material and HAZ and the scatter in its mechanical properties, a statistical approach is necessary. The paper deals with surface cracks at the foot base of aluminothermic welded rails, developing a probabilistic methodology for determining the day by day prospective failure probability. The investigations presented here comprise weld material characterization, simulation of fatigue crack propagation and finally the determination of the failure probability using the Monte Carlo method. The effect of various parameters, such as axle weight, Initial crack size, residual stresses, fatigue crack propagation threshold and date of inspection were analyzed. The results show that, independent of the date of the last inspection, almost any failure event happens in wintertime. This is in accordance with practical experience. However, from the proposed analysis it is evident that the main parameter controlling rail fracture is not only the minimum local temperature, but the temperature range over the whole year. Finally, the results are compared to the standard rail classification method. KW - Railway rails KW - Foot crack KW - Fatigue crack KW - Failure probability KW - Residual lifetime PY - 2016 DO - https://doi.org/10.1016/j.tafmec.2016.05.002 SN - 0167-8442 VL - 85 IS - Part B SP - 398 EP - 411 PB - Elsevier AN - OPUS4-38156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klingbeil, Dietmar A1 - Zerbst, Uwe A1 - Klinger, Christian ED - Yu, S. ED - Feng, X.-Q. T1 - Safe life and damage tolerance concepts of railway axles T2 - ICF13 - 13th International conference on fracture (Proceedings) N2 - On July 9, 2008 a high speed train derailed in Cologne main Station, Germany at a low speed because an axle was broken. Fortunately, the derailment happened at a low speed so that nobody was injured. The reason for the broken axle was investigated and it turned out that most likely large inclusions located shortly undemeath the surface in a T-transition were the origin of the final crack. Basing on that result, a systematic investigation on existing safety assessments of railway axles was performed. This results in an analysis of the production process of axles and in a critical review of existing of existing assessments. Improvements and future developments are outlined. T2 - ICF13 - 13th International conference on fracture CY - Beijing, China DA - 16.06.2013 KW - Railway axles KW - Derailment KW - Service loading fatigue KW - Inclusions KW - Safety assessment PY - 2013 SN - 978-988-12265-2-5 SP - 1 EP - 10 AN - OPUS4-29651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Beretta, S. A1 - Köhler, G. A1 - Lawton, A. A1 - Vormwald, M. A1 - Beier, H.T. A1 - Klinger, Christian A1 - Cerný, I. A1 - Rudlin, J. A1 - Heckel, Thomas A1 - Klingbeil, Dietmar T1 - Safe life and damage tolerance aspects of railway axles - A review JF - Engineering fracture mechanics N2 - The paper gives an overview on safe life and damage tolerance methods applied to railway axles. It describes failure scenarios due to fatigue crack initiation and propagation. Besides common aspects of design, specific features such as corrosion and impact damage from flying ballast are discussed which may reduce the fatigue strength of axles during service. Potential effects of non-metallic inclusions from the steel manufacturing process are addressed in the context of the very high number of loading cycles railway axles are designed for. With respect to damage tolerance general lines of fracture mechanics residual lifetime analyses are introduced. More specific discussion is provided on aspects such as the threshold value of fatigue crack propagation and reliability aspects of non-destructive inspection. KW - Railway axle KW - Safe life design KW - Damage tolerance KW - Fatigue strength KW - Fatigue crack propagation KW - Inspection intervals PY - 2013 DO - https://doi.org/10.1016/j.engfracmech.2012.09.029 SN - 0013-7944 SN - 1873-7315 VL - 98 SP - 214 EP - 271 PB - Elsevier Science CY - Kidlington AN - OPUS4-27779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönherr, J. A. A1 - Duarte, Larissa A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Geilen, M. B. A1 - Klein, M. A1 - Oechsner, M. T1 - Robust determination of fatigue crack propagation thresholds from crack growth data JF - Materials N2 - The robust determination of the threshold against fatigue crack propagation DKth is of paramount importance in fracture mechanics based fatigue assessment procedures. The standards ASTM E647 and ISO 12108 introduce operational definitions of DKth based on the crack propagation rate da/dN and suggest linear fits of logarithmic DK– da/dN test data to calculate DKth. Since these fits typically suffer from a poor representation of the actual curvature of the crack propagation curve, a method for evaluating DKth using a nonlinear function is proposed. It is shown that the proposed method reduces the artificial conservativeness induced by the evaluation method as well as the susceptibility to scatter in test data and the influence of test data density. KW - Fatigue crack propagation threshold KW - ISO 12108 KW - ASTM E647 KW - Data evaluation methods KW - Experimental determination PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552153 DO - https://doi.org/10.3390/ma15144737 SN - 1996-1944 VL - 15 IS - 14 SP - 1 EP - 21 PB - MDPI CY - Basel AN - OPUS4-55215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Ainsworth, R. A. A1 - Beier, H.T. A1 - Pisarski, H. A1 - Zhang, Z. L. A1 - Nikbin, K. A1 - Nitschke-Pagel, T. A1 - Münstermann, S. A1 - Kucharczyk, P. A1 - Klingbeil, Dietmar T1 - Review on fracture and crack propagation in weldments - A fracture mechanics perspective JF - Engineering fracture mechanics N2 - Welding is one of the most common methods in industrial practice for joining components. Its main advantages are high speed in manufacturing combined with low costs and, usually, a high degree of flexibility, integrity and reliability. Nevertheless, welding is a highly complex metallurgical process and, therefore, weldments are susceptible to material discontinuities, flaws and residual stresses which may lead to structural failure and life time reduction. As a consequence weldments are an important field of fracture mechanics methods although its application is more complex than for homogeneous or non-welded structures. The aim of the paper is to provide an overview on the current state of fracture mechanics application to weldments. It starts by discussing the specific features which any fracture mechanics analysis of weldments has to take into account. Then, the experimental determination of fracture toughness, fatigue crack propagation and tensile properties of weldments is addressed. Finally, the analytical determination of the crack driving force in components and structural integrity assessment approaches for weldments are presented. KW - Weldments KW - Fracture mechanics KW - Fracture toughness KW - Fatigue crack propagation KW - Residual stresses KW - Strength mismatch PY - 2014 DO - https://doi.org/10.1016/j.engfracmech.2014.05.012 SN - 0013-7944 SN - 1873-7315 VL - 132 SP - 200 EP - 276 PB - Elsevier Science CY - Kidlington AN - OPUS4-32819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Kiyak, Yusuf A1 - Madia, Mauro A1 - Burgold, Andreas A1 - Riedel, Gernot T1 - Reference loads for plates with semi-elliptical surface cracks subjected to tension and bending for application within R6 type flaw assessment JF - Engineering fracture mechanics N2 - Two of the authors of the present paper proposed a definition of a reference load F0 which can be used as an alternative option to the common limit load for cases where the definition of the latter might be problematic in the frame of flaw assessment procedures such as R6, BS 7910, SINTAP or FITNET. The reference load is defined as that load at which the ligament yielding parameter Lr approaches one. F0, in general, varies along the crack front. It has to be obtained by finite element analyses but the results can be approximated by analytical expressions. In a previous study of the authors such a solution was presented for tension loaded plates with semi-elliptical surface cracks. In the present paper it is extended to pure bending and to combined bending and tension. KW - Flaw assessment KW - R6 procedure KW - BS 7910 KW - SINTAP KW - FITNET KW - Limit load KW - Reference load PY - 2013 DO - https://doi.org/10.1016/j.engfracmech.2012.11.017 SN - 0013-7944 SN - 1873-7315 VL - 99 SP - 132 EP - 140 PB - Elsevier Science CY - Kidlington AN - OPUS4-30416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -