TY - JOUR A1 - Zerbst, Uwe A1 - Klinger, Christian A1 - Clegg, R. T1 - Fracture mechanics as a tool in failure analysis - Prospects and limitations N2 - Although fatigue crack propagation and fracture cause a large part of failure events in industrial practice, fracture mechanics in failure analysis seems to be still a side issue. Starting from an introduction into important basic questions of failure analysis and fracture mechanics, the authors specify what kind of questions in failure analysis can be effectively solved by fracture mechanics (and which can't). They illustrate their discussion with a number of 13 case studies from the literature. Much more pronounced than in the design stage the benefit of fracture mechanics in failure analysis depends on its accuracy. This is limited by both, intrinsic factors of the method and the availability and quality of the input information. The authors discuss the various aspects and provide the reader with some background information which, as they believe, will be helpful for better understanding the prospects and limitations of fracture mechanics in failure analysis and the conditions of its application. KW - Failure analysis KW - Fracture mechanics KW - Fatigue KW - Root cause KW - Accompanying measures PY - 2015 DO - https://doi.org/10.1016/j.engfailanal.2015.07.001 SN - 1350-6307 SN - 1873-1961 VL - 55 SP - 376 EP - 410 PB - Elsevier Science Publ. CY - Oxford AN - OPUS4-33839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe T1 - Foreword N2 - The subject of this Special Issue is the fracture mechanics-based determination of the fatigue strength of weldments. Except for one, all papers were written in closer or wider relation to a methodology developed within the framework of the German Project cluster IBESS. Some of them provide background or supplementary information needed in that context but which is also relevant in a wider frame of research activities. The acronym IBESS stands for the topic of this Special Issue (in German: „Integrale Methode zu Bruchmechanischen Ermittlung der Schwingfestigkeit von Schweißverbindungen). Eight partners were involved. The cluster was cooperatively founded by the German Research Foundation (Deutsche Forschungsgemeinschaft) and by the German AiF Network (Arbeitsgemeinschaft industrieller Forschungsvereinigungen) for industrial research. KW - Fracture mechanics PY - 2018 DO - https://doi.org/10.1016/j.engfracmech.2018.05.046 SN - 0013-7944 VL - 198 IS - SI SP - 1 EP - 1 PB - Elsevier Ltd. AN - OPUS4-48696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe T1 - Application of fracture mechanics to welds with crack origin at the weld toe—a review. Part 2: welding residual stresses. Residual and total life assessment N2 - The two-part paper series provides an overview on the state-of-the-art in the application of engineering fracture mechanics to weldments limited to butt and fillet welds with crack initiation at weld toes. In the present second part, one focus is on welding residual stresses, their characteristics and stability under cyclic loading and their effect on structural integrity. Subsequently, features will be addressed which are essential for applying fracture mechanics to overall fatigue life and fatigue strength considerations of weldments. These comprise fatigue life relevant initial crack sizes and multiple crack initiation and Propagation due to various stress peaks along the weld toe. A concept is briefly introduced which covers all these aspects. KW - Fracture mechanics KW - Welding residual stresses KW - Multiple crack propagation KW - Fatigue strength PY - 2020 DO - https://doi.org/10.1007/s40194-019-00816-y VL - 64 IS - 1 SP - 151 EP - 169 PB - Springer AN - OPUS4-50263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schork, B. A1 - Zerbst, Uwe A1 - Kiyak, Yusuf A1 - Kaffenberger, M. A1 - Madia, Mauro A1 - Oechsner, M. T1 - Effect of the parameters of weld toe geometry on the FAT class as obtained by means of fracture mechanics-based simulations N2 - The fracture mechanics-based IBESS approach is applied to the determination of FAT classes of butt welds with crack Initiation along the weld toe. The aim is an investigation of the effect of the geometrical parameters toe radius, flank angle, reinforcement and secondary notches such as roughness or undercuts. The influence of these parameters is discussed both individually and in combination; however, excluding statistical distributions of them and the material data. The results, when compared with conventional FAT classes for butt welds, are encouraging with respect to a potential contribution of IBESS to the discussion of more advanced quality criteria for welds. To that purpose, demands for further research are proposed. KW - Fracture mechanics KW - Weld toe geometry KW - Fatigue crack initiation KW - FAT class approach PY - 2020 DO - https://doi.org/10.1007/s40194-020-00874-7 IS - 64 SP - 925 EP - 936 PB - Springer AN - OPUS4-53079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhu, Jiangchao A1 - Madia, Mauro A1 - Schurig, Michael A1 - Fedelich, Bernard A1 - Schlums, Hartmut A1 - Zerbst, Uwe T1 - Burst speed assessment of aero-engine turbine disk based on failure assessment diagram and global stability criterion N2 - Aero-engine turbine disks are safety-relevant components which are operated under high thermal and mechanical stress conditions. The actual part qualification and certification procedures make use of spin-tests conducted on production-similar disks. While these tests provide, on the one hand, a reliable definition of the critical conditions for real components, on the other hand they represent a relevant cost item for engine manufacturers. The aim of this work is to present two alternative burst speed assessment methods under development based on the Failure Assessment Diagram (FAD) and a global stability criterion, respectively. In the scope of the fracture mechanics assessment, the failure modes hoop-burst and rim-peeling are investigated with semicircular surface cracks modelled at the critical regions on the turbine disk. The comparison of the predicted critical rotational speed shows good agreement between the assessment methods. KW - Global stability criterion KW - Fracture mechanics KW - Burst KW - Turbine disk PY - 2023 DO - https://doi.org/10.1016/j.engfracmech.2022.109005 SN - 0013-7944 VL - 277 SP - 1 EP - 15 PB - Elsevier Ltd. AN - OPUS4-56736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -