TY - CONF A1 - Zerbst, Uwe A1 - Madia, Mauro ED - Yu, S. ED - Feng, X.-Q. T1 - Fracture mechanics model for predicting fracture strength of metallic alloys containing large second phase particles N2 - An analytical fracture mechanics model for predicting the finite life fatigue strength of components is presented which Combines a number of well established and newly developed approaches such as Murakami’s and McEvily's approach for describing the transient behaviour of crack closure of short cracks, the analytical (long) crack closure function of Newman, the R6 procedure modified by a method for improving the ligament yielding correction proposed by the authors and other elements. Basic assumption is the preexistence of initial flaws such that the crack initiation or nucleation stage is small and can be neglected. The application of the model is demonstrated for small tension plates of aluminium Al 5380 H321 with artificial initial defects generated by FIB technology, the size of which was fixed on the basis of fractographic investigations on broken, smooth specimens. T2 - ICF13 - 13th International conference on fracture CY - Beijing, China DA - 16.06.2013 KW - Fatigue strength KW - S-N curve KW - Fracture mechanics KW - Crack propagation KW - Short cracks PY - 2013 SN - 978-988-12265-2-5 SP - 1 EP - 12 AN - OPUS4-29537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Hellmann, D. T1 - Fracture mechanics model for predicting fatigue strength of metallic alloys containing large second phase particles T2 - ECF 19 - 19th European conference on fracture - Fracture mechanics for durability, reliability and safety CY - Kazan, Russia DA - 2012-08-26 KW - Fatigue strength KW - S-N curve KW - Fracture mechanics KW - Crack propagation KW - Short cracks KW - Bruchmechanik KW - Schwingfestigkeit KW - Bauteilbewertung PY - 2012 SN - 978-5-905576-18-8 IS - Proceeding-ID 116 SP - 1 EP - 14 AN - OPUS4-27278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Beier, H.T. T1 - A model for fracture mechanics based prediction of the fatigue strength: Further validation and limitations N2 - Recently two of the authors of the present paper proposed a model for a fracture mechanics based prediction of the S–N characteristics of metallic components with large microstructural defects and supported this by a validation exercise on tensile plates made of an aluminium alloy AL5380 H321. Here the authors extend the study using a number of further data sets from the literature for which data were available at different R ratios. These data include two aluminium alloys, Al 2024-T3 and Al 7075-T6, and a ductile cast iron, EN-GJS- 400-18-LT. Despite of necessary assumptions for the compensation of partially missing input information the results were fairly reasonable with the exception of one data set. The authors identify high applied stress levels in combination with potential multiple crack initiation as the probable root of the problem and propose a scheme how the model can be extended for taking into account crack initiation. KW - Fatigue strength KW - S–N curve KW - Fracture mechanics KW - Crack propagation KW - Short cracks PY - 2014 UR - http://ac.els-cdn.com/S0013794413003901/1-s2.0-S0013794413003901-main.pdf?_tid=1403b676-b8a0-11e3-9087-00000aab0f26&acdnat=1396248522_d8c91133aa860e68196d9325c22ce651 U6 - https://doi.org/10.1016/j.engfracmech.2013.12.005 SN - 0013-7944 SN - 1873-7315 SP - 1 EP - 17 PB - Elsevier Science CY - Kidlington AN - OPUS4-30452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Beier, H.T. T1 - A model for the determination of the fatigue life in technical alloys containing large and small defects N2 - The determination of the fatigue life in technical alloys containing large and small defects must rely on a propagation model which accounts for short and long crack growth. Recently an analytical model which incorporates propagation in the short crack regime and plastic correction for the crack driving force has been presented by two of the authors. This work is intended to show further validation of the model, taking into account data sets for different materials with different testing conditions. Despite the assumptions about missing parameters, the value of which had to be taken from the literature, the predictions showed a fairly good approximation of the fatigue lives. A possible interpretation of the results in terms of multiple crack initiation and propagation at higher loads is proposed. T2 - EFC20 - 20th European conference on fracture CY - Trondheim, Norway DA - 30.06.2014 KW - Fatigue strength KW - Crack propagation KW - Short cracks PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-311961 SN - 2211-8128 VL - 3 SP - 493 EP - 498 PB - Curran CY - Red Hook, NY, USA AN - OPUS4-31196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe T1 - Fatigue strength and fracture mechanics of mechanical components N2 - The present paper provides a discussion on all these topics and it offers solutions for it. The authors present an analytical solution of a Delta J based crack driving force based on an R6 type approach but modified for cyclic loading. The gradual build-up of the crack closure effect is modelled by the so-called cyclic R curve which describes the crack size dependency of the fatigue crack propagation threshold in the short crack regime. It is explained how the cyclic R curve is experimentally determined and how it can be estimated by a modified Kitagawa-Takahashi approach. T2 - Proceedings of the 7th International Conference on Mechanics and Materials in Design T2 - 7th International Conference on Mechanics and Materials in Design CY - Albufeira, Portugal DA - 11.07.2017 KW - Fatigue strength KW - S-N curve KW - Crack propagation KW - J-integral KW - Residual lifetime PY - 2017 SN - 978-989-98832-7-7 SP - 507 EP - 508 AN - OPUS4-46863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -