TY - JOUR A1 - Zerbst, Uwe T1 - Application of fracture mechanics to welds with crack origin at the weld toe—a review. Part 2: welding residual stresses. Residual and total life assessment N2 - The two-part paper series provides an overview on the state-of-the-art in the application of engineering fracture mechanics to weldments limited to butt and fillet welds with crack initiation at weld toes. In the present second part, one focus is on welding residual stresses, their characteristics and stability under cyclic loading and their effect on structural integrity. Subsequently, features will be addressed which are essential for applying fracture mechanics to overall fatigue life and fatigue strength considerations of weldments. These comprise fatigue life relevant initial crack sizes and multiple crack initiation and Propagation due to various stress peaks along the weld toe. A concept is briefly introduced which covers all these aspects. KW - Fracture mechanics KW - Welding residual stresses KW - Multiple crack propagation KW - Fatigue strength PY - 2020 DO - https://doi.org/10.1007/s40194-019-00816-y VL - 64 IS - 1 SP - 151 EP - 169 PB - Springer AN - OPUS4-50263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, P. A1 - Zerbst, Uwe ED - Hütter, G. ED - Zybell, L. T1 - Fracture mechanics assessment of welded components at static loading N2 - Special aspects of welded components such as geometrical imperfections, inhomogeneity, strength mismatch and welding residual stresses have to be taken into account in a fracture mechanics analysis since they affect the crack driving force in the component as weil as the fracture resistance of the material. The treatment of components subjected to static loading is based on methods such as the European SINT AP procedure, which has been validated in a nurober of case studies. In the present paper the influence of strength mismatch and residual stresses on the fracture resistance and the assessment of a component are discussed. T2 - International symposium 'Recent trends in fracture and damage mechanics' CY - Freiberg/Sachsen, Germany DA - 24.09.2015 KW - Fracture mechanics KW - Weldments PY - 2015 SN - 978-3-319-21466-5 SP - Part II, 61 EP - 86 PB - Springer AN - OPUS4-34758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Beier, H.T. T1 - A model for fracture mechanics based prediction of the fatigue strength: Further validation and limitations N2 - Recently two of the authors of the present paper proposed a model for a fracture mechanics based prediction of the S–N characteristics of metallic components with large microstructural defects and supported this by a validation exercise on tensile plates made of an aluminium alloy AL5380 H321. Here the authors extend the study using a number of further data sets from the literature for which data were available at different R ratios. These data include two aluminium alloys, Al 2024-T3 and Al 7075-T6, and a ductile cast iron, EN-GJS- 400-18-LT. Despite of necessary assumptions for the compensation of partially missing input information the results were fairly reasonable with the exception of one data set. The authors identify high applied stress levels in combination with potential multiple crack initiation as the probable root of the problem and propose a scheme how the model can be extended for taking into account crack initiation. KW - Fatigue strength KW - S–N curve KW - Fracture mechanics KW - Crack propagation KW - Short cracks PY - 2014 UR - http://ac.els-cdn.com/S0013794413003901/1-s2.0-S0013794413003901-main.pdf?_tid=1403b676-b8a0-11e3-9087-00000aab0f26&acdnat=1396248522_d8c91133aa860e68196d9325c22ce651 DO - https://doi.org/10.1016/j.engfracmech.2013.12.005 SN - 0013-7944 SN - 1873-7315 SP - 1 EP - 17 PB - Elsevier Science CY - Kidlington AN - OPUS4-30452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Kiyak, Yusuf A1 - Madia, Mauro A1 - Burgold, Andreas A1 - Riedel, Gernot T1 - Reference loads for plates with semi-elliptical surface cracks subjected to tension and bending for application within R6 type flaw assessment N2 - Two of the authors of the present paper proposed a definition of a reference load F0 which can be used as an alternative option to the common limit load for cases where the definition of the latter might be problematic in the frame of flaw assessment procedures such as R6, BS 7910, SINTAP or FITNET. The reference load is defined as that load at which the ligament yielding parameter Lr approaches one. F0, in general, varies along the crack front. It has to be obtained by finite element analyses but the results can be approximated by analytical expressions. In a previous study of the authors such a solution was presented for tension loaded plates with semi-elliptical surface cracks. In the present paper it is extended to pure bending and to combined bending and tension. KW - Flaw assessment KW - R6 procedure KW - BS 7910 KW - SINTAP KW - FITNET KW - Limit load KW - Reference load PY - 2013 DO - https://doi.org/10.1016/j.engfracmech.2012.11.017 SN - 0013-7944 SN - 1873-7315 VL - 99 SP - 132 EP - 140 PB - Elsevier Science CY - Kidlington AN - OPUS4-30416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Kiyak, Yusuf A1 - Wille, Frank A1 - Zerbst, Uwe A1 - Weber, Mike A1 - Klingbeil, Dietmar T1 - Assessment of ductile cast iron fracture mechanics analysis within licensing of German transport packages N2 - In the design approval of transport packages for radioactive materials, the mechanical and thermal safety assessment is carried out in Germany by competent authority BAM. In recent years BAM was involved in several licensing procedures of new spent fuel and HLW package designs, where the cask body is of Ductile Cast Iron (DCI). According to IAEA regulations package designs have to fulfill requirements for specific conditions of transport. Type B(U) packages must withstand the defined accident conditions of transport. The temperature range from -40°C up to the operational temperature has to be considered. For the cask material DCI, it is necessary to determine safety against brittle fracture. The German guideline BAM-GGR 007 defines requirements for fracture mechanics of packagings made of DCI. Due to complex cask body structure and the dynamic loading a fracture mechanical assessment by analytical approaches is not always possible. Experience of recent design approval procedures show that the application of numerical calculations are applicable to determine the stresses and stress intensity factors in the cask body. At the first step a numerical analysis has to be done to identify the loading state at the whole cask body. Secondly an analysis of a detail of the cask body is made considering the displacement boundary conditions of the global model. An artificial flaw is considered in this detailed model to calculate the fracture mechanical loading state. The finite element mesh was strongly refined in the area of the flaw. The size of the artificial flaw is based on the ultrasonic inspection acceptance criteria applied for cask body manufacture. The applicant (GNS) developed additional analysis tools for calculation of stress intensity factor and/or J-Integral. The assessment approach by BAM led to the decision to develop own tools to the possibility for independent proof of the results. The paper describes the authority assessment approach for DCI fracture mechanics analysis. The validation procedure incl. the development of own tools is explained. BAM developed a postprocessor to determine the fracture mechanical loads. A horizontal 1 m puncture bar drop test is used to give a detailed description of the assessment procedure. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 PY - 2013 SP - 1 EP - 10 PB - Omnipress AN - OPUS4-30175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Vormwald, M. A1 - Pippan, R. A1 - Gänser, H.-P. A1 - Sarrazin-Baudoux, C. A1 - Madia, Mauro T1 - About the fatigue crack propagation threshold of metals as a design criterion - A review N2 - The fatigue crack propagation threshold ΔKth is of paramount importance for any kind of damage tolerant design, but in contrast to this importance, the determination and application of the parameter is not on the firm ground as previously assumed. The paper discusses questions of its experimental determination as well as of its application to components. In both fields, new questions have been raised with the potential to challenge or modify long-standing knowledge. Against this background, the paper is an attempt to systematize the established knowledge as well as questions and open issues. KW - Fatigue crack propagation threshold KW - Experimental determination KW - Influencing factors KW - Transferability to components PY - 2016 DO - https://doi.org/10.1016/j.engfracmech.2015.12.002 SN - 0013-7944 SN - 1873-7315 VL - 153 SP - 190 EP - 243 PB - Elsevier Science CY - Kidlington AN - OPUS4-35264 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - Application of the cyclic R-curve method in notch fatigue analysis N2 - The paper deals with the prediction of the fatigue Limit of notched specimens. Some authors in the literature have shown that this issue can be solved by employing an approach based on critical distances, others used elastic fracture mechanics. In this paper the fatigue limit of notched specimens is given by the non-propagating condition of mechanically small surface cracks. According to the so-called cyclic R-curve method, the crack driving force of a growing small crack is compared to its resistance force, which incorporates the gradual build-up of crack closure. The fatigue limit is determined by that applied nominal stress, for which the tangency condition of crack driving and resistance force is satisfied. The approach has been modified to incorporate plasticity effects in the mechanically short crack Regime and it has been applied to a mild and a high-strength steel, in case of an infinite plate with circular hole under remote tensile stress. The method has been successfully applied to the evaluation of fatigue notch-sensitivity in case of surface roughness. KW - Notch fatigue KW - Notch sensitivity KW - Cyclic R-curve KW - Non-propagating cracks KW - Critical distance PY - 2016 DO - https://doi.org/10.1016/j.ijfatigue.2015.06.015 SN - 0142-1123 VL - 82 IS - 1 SP - 71 EP - 79 PB - Elsevier Ltd. CY - Oxford, UK AN - OPUS4-35298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro T1 - Fracture mechanics based assessment of the fatigue strength: approach for the determination of the initial crack size N2 - In a number of previous papers, the authors have proposed a model for fracture mechanics based prediction of the S-N characteristics of metallic components with large microstructural defects. Here, an extension to materials that do not show large defects onto the fracture surfaces is provided. In such cases, an approach based on a so-called cyclic R-curve analysis is proposed for the determination of the initial flaw size, which has to be used in the calculation of fatigue crack propagation. The principle is explained and demonstrated by a first application to a welded joint. KW - Fatigue strength KW - Weldments KW - Short cracks KW - Initial flaw size KW - Cyclic R-curve PY - 2015 DO - https://doi.org/10.1111/ffe.12288 SN - 1460-2695 SN - 0160-4112 SN - 8756-758X VL - 38 IS - 9 SP - 1066 EP - 1075 PB - Blackwell CY - Oxford AN - OPUS4-33838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Klinger, Christian A1 - Clegg, R. T1 - Fracture mechanics as a tool in failure analysis - Prospects and limitations N2 - Although fatigue crack propagation and fracture cause a large part of failure events in industrial practice, fracture mechanics in failure analysis seems to be still a side issue. Starting from an introduction into important basic questions of failure analysis and fracture mechanics, the authors specify what kind of questions in failure analysis can be effectively solved by fracture mechanics (and which can't). They illustrate their discussion with a number of 13 case studies from the literature. Much more pronounced than in the design stage the benefit of fracture mechanics in failure analysis depends on its accuracy. This is limited by both, intrinsic factors of the method and the availability and quality of the input information. The authors discuss the various aspects and provide the reader with some background information which, as they believe, will be helpful for better understanding the prospects and limitations of fracture mechanics in failure analysis and the conditions of its application. KW - Failure analysis KW - Fracture mechanics KW - Fatigue KW - Root cause KW - Accompanying measures PY - 2015 DO - https://doi.org/10.1016/j.engfailanal.2015.07.001 SN - 1350-6307 SN - 1873-1961 VL - 55 SP - 376 EP - 410 PB - Elsevier Science Publ. CY - Oxford AN - OPUS4-33839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Heckel, Thomas A1 - Carboni, M. T1 - Non-destructive testing and fracture mechanics - A short discussion N2 - A discussion is provided on the relation between non-destructive testing (NDT) and fracture mechanics. The basic tasks behind this are to guarantee the safety of a component at a potential hazard loading event, to specify inspection intervals or, alternatively, of demands on NDT for a fixed inspection regime, to plan accompanying measures for cases of temporary continued operation of structures in which cracks have been detected, and, finally, fatigue strength considerations which take into account initial defects. T2 - 42nd Annual review of progress in quantitative nondestructive evaluation conference CY - Minneapolis, Minnesota, USA DA - 2015-07-26 KW - Zerstörungsfreie Prüfung KW - Schwingfestigkeit KW - Schadenstoleranz KW - Bruchmechanik KW - probability KW - damage tolerance KW - railway axles KW - inspection PY - 2016 SN - 978-0-7354-1353-5 DO - https://doi.org/10.1063/1.4940614 SN - 0094-243X VL - 1706 SP - 150002-1 EP - 150002-5 PB - AIP Publishing CY - Melville, New York, USA AN - OPUS4-33866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -