TY - CONF A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Vormwald, M. T1 - Fatigue strength and fracture mechanics N2 - If fracture mechanics shall be applied to the total lifetime respectively the fatigue limit of components (within the meaning of the S-N curve approach) it has to address four challenges: (a) It has to adequately describe so-called short crack propagation, which cannot be based on the common long crack concepts for principle reasons. Since the crack size is in the order of the plastic zone size, the modelling of short crack propagation cannot be based on the common linear elastic Delta K concept. Instead, an elastic-plastic parameter such as the cyclic J integral has to be applied. A second point is that the crack closure concept has to be modified in that the crack opening stress is not a constant, crack size- independent parameter but shows a transient behaviour with increasing short crack size. (b) It has to provide a meaningful definition of the initial crack dimensions as the starting point for an S-N curve relevant (residual) lifetime analysis. This can be based either on the (statistical) size of material defects which can be treated as cracks or by the size of the crack which would arrest subsequent to early crack propagation, whatever is larger. (c) It has to cope with the problem of multiple cracks for load levels higher than the fatigue limit such as it occurs in many applications in the absence of very large initial defects. (d) This requires consequent statistical treatment taking into account variations in the local geometry of the area where crack initiation has to be expected as well as the scatter in the initial crack size and in the material data used for the analyses. T2 - 2nd International Conference on Structural Integrity CY - Funchal, Madeira, Portugal DA - 04.09.2017 KW - Fatigue strength KW - Fracture mechanics KW - Initial crack size KW - Short crack propagation KW - Multiple crack propagation PY - 2017 AN - OPUS4-42546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe T1 - Lessons learned on FFS particulary of (short) fatigue crack propagation N2 - The presentation provides a brief overview on results obtained in the context of fracture mechanics based flaw assessment particularly in the context of short crack propagation. Background is the planned updating of international fitness-for-service procedures such as BS 7910. Specific topics addressed are the determination of the cyclic elastic-plastic crack driving force, the description of the gradual build-up of the crack closure phenomenon at the short crack stage, cyclic R curve analysis and residual stresses. T2 - 2nd "Mind the Gap" in FFS assessment procedures workshop CY - Bristol, United Kingdom DA - 19.10.2017 KW - Reference yield load KW - Cyclic J-integral KW - Crack closure phenomenon PY - 2017 AN - OPUS4-42559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Schork, B. A1 - Hensel, J. A1 - Kucharczyk, P. A1 - Tchoffo Ngoula, D. A1 - Tchuindjang, D. A1 - Bernhard, J. A1 - Beckmann, C. T1 - Fatigue and fracture of weldments - The IBESS approach for the determination of the fatigue life and strength of weldments by fracture mechanics analysis N2 - The acronym IBESS stands for "Integrale Bruchmechanische Ermittlung der Schwingfestigkeit von Schweißverbindungen" which, translated from German, means "integral fracture mechanics determination of the fatigue strength of welds". the method introduced in this study is the outcome of a German Research cluster in which eight partners were involved. A list of them is found at the end this study. The IBESS method is characterized by a number of partially novel aspects and elements of fracture mechanics applied to the evaluation of fatigue stength of welds. The most important ones are: (a) Determination of fatigue crack propagation for mechanically/physically short and long cracks. (b) Determination of an elastic-plastic crack driving force for the treatment of mechanically short cracks. To that purpose an analytical expression for the cyclic J-integral was developed and validated against finite element results. (c) The gradual build-up of the crack closure phenomenon is determined by using cyclic R-curves which describe the crack size dependency of the fatigue crack propagation threshold in the physically short crack growth regime. (d) A physically meaningful initial crack size is defined for total life consideration. It is based on a two-criteria approach. Based on a cyclic R-curve analysis, the crack size at crack arrest is determined as a lower bound. If, however, a pre-existing crack-like defect is larger than this, its dimensions define the initial crack size. (e) Multiple crack propagation at the weld toe is considered. (f) In conjunction with this, the variation of the weld toe geometry is considered in a stochastic model. (g) As a result, both the fatigue limit (defined for 107 loading cycles) and the finite life (high cycle) fatigue S-N curve are obtained statistically. (h) At various analysis steps, parametric equations have been developed which allow for analytical calculations instead of complete stochastic analyses based on finite elements which are unrealistic even at present. (i) The method has been validated with a large number of S-N curves including two materials, three weldment types with two geometries, each referring to differnt manufacturing technologies and the as-welded and stressrelieved state. (j) Althrough not finally solved, an extended discussion is provided on the issue of welding residual stresses including their redistribution under cyclic loading. (k) A number of simplifications is proposed at lower analyses levels which, however, partly lack complete validation by now. KW - Crack initation KW - Short crack KW - Fracture of weldments KW - IBESS PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-468853 UR - https://www.kriso.ee/db/9783030040727.html SN - 978-3-03004-072-7 SP - 1 EP - 189 PB - Springer-Verlag CY - Berlin AN - OPUS4-46885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Schork, B. A1 - Hensel, J. A1 - Kucharczyk, P. A1 - Ngoula, D. A1 - Tchuindjang, D. A1 - Bernhard, J. A1 - Beckmann, C. T1 - The IBESS approach for the determination of the fatigue life and strength of weldments by fracture mechanics analysis T3 - Fatigue and Fracture of Weldments N2 - This book provides a comprehensive and thorough guide to those readers who are lost in the often-confusing context of weld fatigue. It presents straightforward information on the fracture mechanics and material background of weld fatigue, starting with fatigue crack initiation and short cracks, before moving on to long cracks, crack closure, crack growth and threshold, residual stress, stress concentration, the stress intensity factor, J-integral, multiple cracks, weld geometries and defects, microstructural parameters including HAZ, and cyclic stress-strain behavior. The book treats all of these essential and mutually interacting parameters using a unique form of analysis. KW - Fatigue crack propagation KW - Cyclic J-integral KW - Cyclic R-curve analysis KW - Fatigue S-N curve KW - HAZ PY - 2019 SN - 978-3-030-04072-7 SN - 978-3-030-04073-4 DO - https://doi.org/10.1007/978-3-030-04073-4 SP - 1 EP - 130 PB - Springer CY - Cham AN - OPUS4-47576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Duarte, Larissa A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - The use of effective fatigue crack propagation data obtained at closure-free conditions for component assessment T2 - Proceedings of the 43rd International Conference on Materials Mechanics N2 - The knowledge of fatigue crack propagation data in terms of their effective values is important for a conservative and safe life assessment of components subjected to cyclic loading. To overcome issues related to the precise consideration of the crack-closure effects on experimental data obtained at small R ratios, closure-free data have been obtained at R ≈ 0.8 by different experimental procedures. The statistical analysis of the intrinsic fatigue crack propagation threshold obtained experimentally has shown a small data scatter and good agreement between procedures. When compared with effective values obtained from analytical corrections of closure-affected data, the data obtained at R ≈ 0.8 should lead to a conservative life estimation. T2 - 43rd International Conference on Materials Mechanics CY - Sani, Greece DA - 05.06.2022 KW - Component assessment KW - Effective crack propagation data KW - Experimental procedure KW - Crack-closure PY - 2022 SP - 104 EP - 108 AN - OPUS4-56851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zhu, Jiangchao A1 - Madia, Mauro A1 - Schurig, Michael A1 - Fedelich, Bernard A1 - Schlums, H. A1 - Zerbst, Uwe T1 - Burst Behaviours Of Aero Engine Turbine Disk At Overspeed Conditions T2 - 43rd International Conference on Material Mechanics N2 - Aero-engine turbine disks are safety-relevant components which are operated under high thermal and mechanical stress conditions. The actual part qualification and certification procedures make use of spin-tests conducted on production-similar disks. The aim of this work is to present part of a fracture mechanics-based procedure under development which aims at replacing the tests on production-similar disks with lab tests on fracture mechanics specimens. The finite element simulation of the cracked disk considers the real thermal and mechanical loading conditions. In order to design a lab representative specimen, beside the crack driving force, expressed in terms of 𝐽-integral, also the constraint to plastic deformation e.g., stress triaxiality, at the crack-tip must be similar for the same crack in the specimen and in the disk. This has been achieved and as expected, both the highest 𝐽 -integral and constraint factor are calculated at the same location along the crack front for both disk and specimen. The results of the structural integrity assessment in the form of a Failure Assessment Diagram (FAD) show good agreement between designed specimen and disk both in terms of expected failure mode and value of the critical speed. In addition, probabilistic aspects are also considered in the calculations. T2 - 43rd Int. Conference on Materials Mechanics, June 5-10, 2022, Greece CY - Sani, Chalkidiki, Greece DA - 05.06.2022 KW - Structural integrity KW - Turbine disk KW - Fracture mechanics KW - Overspeed PY - 2022 SP - 1 EP - 13 AN - OPUS4-57279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Klinger, Christian A1 - Bettge, Dirk T1 - Defects as a root cause for fatigue failure of metallic components N2 - The Topic of the presentationis a discussion on defects which can cause failure in cyclically loaded metallic components. Although also touching Features such as material defects such as pores or micro-shrinkages, etc. and geometric defects such as surface roughness and secondary notches (which are not considered in the design process) which origin in manufacturing, and others the presentation concentrates on non-metallic inclusions. It is prefaced by an introduction to the life cycle of a fatigue crack from initiation up to fracture. Special emphasis is put on the fact that only cracks which are not arrested during one of their distinct Propagation stages can grow to a critical size. T2 - VIII. International Conference on Engineering Failure Analysis CY - Budapest, Ungarn DA - 08.06.2018 KW - Metallic components KW - Material defects KW - Micro-shrinkages PY - 2018 AN - OPUS4-46875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -