TY - CONF A1 - Komann, Steffen A1 - Kiyak, Yusuf A1 - Wille, Frank A1 - Zerbst, Uwe A1 - Weber, Mike A1 - Klingbeil, Dietmar T1 - Assessment of ductile cast iron fracture mechanics analysis within licensing of German transport packages T2 - 52nd INMM Annual meeting (Proceedings) N2 - In the approval procedure of transport packages for radioactive materials, the mechanical and thermal safety assessment is carried out in Germany by competent authority BAM. In recent years BAM was involved in several licensing procedures of new spent fuel and HLW package designs, where the cask body was made of Ductile Cast Iron (DCI). According to IAEA regulations package designs have to fulfill requirements for specific conditions of transport. Type B(U) packages must withstand the defined accident conditions of transport. The temperature range from -40°C up to the operational temperature has to be considered. For the cask material DCI, it is necessary to determine the brittle fracture behavior. The German guideline BAM-GGR 007 defines requirements for the fracture mechanics of DCI. Due to complex structure of the cask body and the dynamic loading a fracture mechanical assessment in an analytical kind is not always possible. Experience of recent design approval procedures show that the application of numerical calculations are applicable to determine the fracture mechanical load in the cask body. At the first step a numerical analysis has to be done to identify the loading state at the whole cask body. Secondly an analysis of a detail of the cask body is made considering the displacement boundary conditions of the global model. An artificial flaw is considered in this detailed model to calculate the fracture mechanical loading state. The finite element mesh was strongly refined in the area of flaw. The size of the artificial flaw is characterized by the ultrasonic inspection used for the quality assurance of the package. The applicant developed additional analysis tools for calculation of stress intensity factor and/or J-Integral. The assessment approach by BAM led to the decision to develop own tools to the possibility for independent check of the results. The paper describes the authority assessment approach for the DCI fracture mechanics analysis. The validation procedure incl. the development of own tools is explained. BAM developed a post-processor called JINFEM to determine the fracture mechanical loads. The regulatory 1 m puncture bar drop test is used to give an example of the assessment procedure. T2 - 52nd INMM Annual meeting CY - Palm Desert, CA, USA DA - 17.07.2011 KW - Mechanische Bewertung KW - Radioaktives Material KW - Numerische Analyse KW - Bruchmechanik PY - 2011 SP - 1 EP - 10 AN - OPUS4-25022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Madia, Mauro ED - Yu, S. ED - Feng, X.-Q. T1 - Fracture mechanics model for predicting fracture strength of metallic alloys containing large second phase particles T2 - ICF13 - 13th International conference on fracture (Proceedings) N2 - An analytical fracture mechanics model for predicting the finite life fatigue strength of components is presented which Combines a number of well established and newly developed approaches such as Murakami’s and McEvily's approach for describing the transient behaviour of crack closure of short cracks, the analytical (long) crack closure function of Newman, the R6 procedure modified by a method for improving the ligament yielding correction proposed by the authors and other elements. Basic assumption is the preexistence of initial flaws such that the crack initiation or nucleation stage is small and can be neglected. The application of the model is demonstrated for small tension plates of aluminium Al 5380 H321 with artificial initial defects generated by FIB technology, the size of which was fixed on the basis of fractographic investigations on broken, smooth specimens. T2 - ICF13 - 13th International conference on fracture CY - Beijing, China DA - 16.06.2013 KW - Fatigue strength KW - S-N curve KW - Fracture mechanics KW - Crack propagation KW - Short cracks PY - 2013 SN - 978-988-12265-2-5 SP - 1 EP - 12 AN - OPUS4-29537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klingbeil, Dietmar A1 - Zerbst, Uwe A1 - Klinger, Christian ED - Yu, S. ED - Feng, X.-Q. T1 - Safe life and damage tolerance concepts of railway axles T2 - ICF13 - 13th International conference on fracture (Proceedings) N2 - On July 9, 2008 a high speed train derailed in Cologne main Station, Germany at a low speed because an axle was broken. Fortunately, the derailment happened at a low speed so that nobody was injured. The reason for the broken axle was investigated and it turned out that most likely large inclusions located shortly undemeath the surface in a T-transition were the origin of the final crack. Basing on that result, a systematic investigation on existing safety assessments of railway axles was performed. This results in an analysis of the production process of axles and in a critical review of existing of existing assessments. Improvements and future developments are outlined. T2 - ICF13 - 13th International conference on fracture CY - Beijing, China DA - 16.06.2013 KW - Railway axles KW - Derailment KW - Service loading fatigue KW - Inclusions KW - Safety assessment PY - 2013 SN - 978-988-12265-2-5 SP - 1 EP - 10 AN - OPUS4-29651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Zerbst, Uwe A1 - Ainsworth, R. A. A1 - Madia, Mauro ED - Klingbeil, D. ED - Vormwald, M. ED - Eulitz, K.-G. T1 - Reference load versus limit load in engineering flaw assessment: A proposal for a hybrid analysis option T2 - 18th European conference on fracture (ECF 18) - Fracture of materials and structures from micro to macro scale (Proceedings) N2 - The net section limit load FY is a key input parameter for the accuracy of any elastic-plastic flaw assessment procedure of the R6 type. Unfortunately available limit load solutions are of variable quality since they have been obtained over decades by different methods. As a consequence the results of the fracture analyses such as the critical load or crack size are limited in their accuracy and are often significantly conservative. A further problem is that common limit load solutions based on ligament yielding are inadequate in a number of cases even for through crack configurations and should be replaced by some kind of local yielding solutions. In the present paper a simple and straightforward reference load definition is proposed instead of the limit load which strictly corresponds to a ligament yielding parameter Lr = 1 in the R6 Routine and similar approaches such as SINTAP and FITNET. This can be determined by finite element simulation for any geometry. In addition to a previous study on thin wall notched plates the method is applied to plates containing shallow semi-elliptical surface cracks. The results demonstrate that the approach provides a suitable extension and improvement of the existing methods. T2 - 18th European conference on fracture (ECF 18) - Fracture of materials and structures from micro to macro scale CY - Dresden, Germany DA - 2010-08-30 KW - Flaw assessment KW - Reference stress method KW - R6 procedure KW - EPRI method KW - SINTAP KW - FITNET KW - Limit load KW - Reference load PY - 2010 SN - 978-3-00-031802-3 IS - Paper 81 SP - 1 EP - 11 AN - OPUS4-22329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Madia, Mauro A1 - Riesch-Oppermann, H. A1 - Zerbst, Uwe A1 - Beretta, S. ED - Klingbeil, D. ED - Vormwald, M. ED - Eulitz, K.-G. T1 - A new full-probabilistic framework for the structural integrity assessment of structures containing cracks T2 - 18th European conference on fracture (ECF 18) - Fracture of materials and structures from micro to macro scale (Proceedings) T2 - 18th European conference on fracture (ECF 18) - Fracture of materials and structures from micro to macro scale CY - Dresden, Germany DA - 2010-08-30 KW - Structural integrity KW - SINTAP KW - FITNET KW - Reliability KW - FORM PY - 2010 SN - 978-3-00-031802-3 IS - C.02.1-3 / #306 SP - 1 EP - 10 AN - OPUS4-22843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Hellmann, D. T1 - Fracture mechanics model for predicting fatigue strength of metallic alloys containing large second phase particles T2 - ECF 19 - 19th European conference on fracture - Fracture mechanics for durability, reliability and safety T2 - ECF 19 - 19th European conference on fracture - Fracture mechanics for durability, reliability and safety CY - Kazan, Russia DA - 2012-08-26 KW - Fatigue strength KW - S-N curve KW - Fracture mechanics KW - Crack propagation KW - Short cracks KW - Bruchmechanik KW - Schwingfestigkeit KW - Bauteilbewertung PY - 2012 SN - 978-5-905576-18-8 IS - Proceeding-ID 116 SP - 1 EP - 14 AN - OPUS4-27278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Kiyak, Yusuf A1 - Wille, Frank A1 - Zerbst, Uwe A1 - Weber, Mike A1 - Klingbeil, Dietmar T1 - Assessment of ductile cast iron fracture mechanics analysis within licensing of German transport packages T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials (Proceedings) N2 - In the design approval of transport packages for radioactive materials, the mechanical and thermal safety assessment is carried out in Germany by competent authority BAM. In recent years BAM was involved in several licensing procedures of new spent fuel and HLW package designs, where the cask body is of Ductile Cast Iron (DCI). According to IAEA regulations package designs have to fulfill requirements for specific conditions of transport. Type B(U) packages must withstand the defined accident conditions of transport. The temperature range from -40°C up to the operational temperature has to be considered. For the cask material DCI, it is necessary to determine safety against brittle fracture. The German guideline BAM-GGR 007 defines requirements for fracture mechanics of packagings made of DCI. Due to complex cask body structure and the dynamic loading a fracture mechanical assessment by analytical approaches is not always possible. Experience of recent design approval procedures show that the application of numerical calculations are applicable to determine the stresses and stress intensity factors in the cask body. At the first step a numerical analysis has to be done to identify the loading state at the whole cask body. Secondly an analysis of a detail of the cask body is made considering the displacement boundary conditions of the global model. An artificial flaw is considered in this detailed model to calculate the fracture mechanical loading state. The finite element mesh was strongly refined in the area of the flaw. The size of the artificial flaw is based on the ultrasonic inspection acceptance criteria applied for cask body manufacture. The applicant (GNS) developed additional analysis tools for calculation of stress intensity factor and/or J-Integral. The assessment approach by BAM led to the decision to develop own tools to the possibility for independent proof of the results. The paper describes the authority assessment approach for DCI fracture mechanics analysis. The validation procedure incl. the development of own tools is explained. BAM developed a postprocessor to determine the fracture mechanical loads. A horizontal 1 m puncture bar drop test is used to give a detailed description of the assessment procedure. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 PY - 2013 SP - 1 EP - 10 PB - Omnipress AN - OPUS4-30175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blasón Gonzalez, Sergio A1 - Chaudry, M. A1 - Elorriaga, A. A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Llavori, I. A1 - Hilgenberg, Kai T1 - Design methodology of vessel produced by L PBF stainless steel using representative specimens N2 - This work presents the preliminary results of an ongoing project with a double objective: on the one hand, the characterisation of the mechanical properties against fatigue damage of an additively manufactured 316 stainless steel produced by laser powder bed-based (L-PBF) technology; on the other hand, the implementation of numerical simulation techniques able to predict the mechanical behaviour of the material in order to optimise and reduce the design costs of vessels used in the chemical sector. The current state of the work developed in this research framework allows showing the first batch of experimental results of crack propagation rate (FCGR) and high cycle fatigue (HCF) tests. The geometry of the vessels studied presents three clearly differentiated regions, either in terms of thickness (11-15 mm) or concerning the inclination of the walls to the direction of manufacturing (0º - 45º). The experimental campaign carried out so far allows identifying the differences in behaviour when comparing different extraction locations around the vessel. This is due to the variations in thermal cycles that the deposited material undergoes during the manufacturing process. Therefore, this causes variations in the microstructure which lead to changes in the response of the material. In this work, these differences are analysed qualitatively and quantitatively from the results of FCGR and HCF, thus allowing to locate the regions with the highest risk in terms of structural integrity against fatigue. This preliminary phase together with the numerical simulation of the additive manufacturing process are key to achieving a reliable description and modelling of the material. The latter will make it possible to address the priority aim of this project, involving the manufacture of independent samples whose properties are representative of the original material extracted from the reference vessels. It is, therefore, a comprehensive methodology for the design of additively manufactured components based on the localised fatigue mechanical properties of representative specimens. T2 - ECF23, European Conference on Fracture 2022 CY - Funchal, Portugal DA - 27.06.2022 KW - Additive manufacturing KW - Steel 316L KW - Fracture Mechanics PY - 2022 AN - OPUS4-55240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duarte, Larissa A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - The effect of the environmental conditions on the threshold against fatigue crack propagation JF - Procedia Structutal Integrity N2 - The threshold against fatigue crack propagation (ΔKth) is a crucial parameter for the damage tolerance assessment of engineering components subjected to cyclic loading and it is composed by two distinct components, one intrinsic, dependent on the elastic material properties and the lattice type, and one extrinsic, related to the occurrence of crack closure effects. An important issue is that several factors can influence ΔKth and, in general, the fatigue crack propagation behavior. In this work, the influence of the experimental procedure, air humidity, stress ratio and test frequency on da/dN-ΔK data has been investigated. Results are discussed with their potential causes and consequences on the calculations of the residual lifetime. KW - Fatigue crack propagation threshold KW - Crack closure effect KW - Experimental procedure KW - Environmental conditions PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544905 DO - https://doi.org/10.1016/j.prostr.2022.03.030 VL - 38 SP - 292 EP - 299 PB - Elsevier B.V. AN - OPUS4-54490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Werner, Tiago T1 - Estimation of the Kitagawa-Takahashi diagram by cyclic R curve analysis JF - Procedia Structural Integrity N2 - The Kitagawa-Takahashi (KT) diagram is a proven concept for describing the fatigue limit in presence of a defect or crack. It can be determined empirically with great experimental effort. It can also be estimated by means of the El Haddad relationship if the endurance limit and the long fatigue crack propagation threshold are available in reasonable accuracy. A third option is the determination using the cyclic R-curve, which describes the dependency of the fatigue crack propagation threshold on the crack growth at the short crack propagation stage. This can be experimentally determined using a closure-free initial pre-crack. It can then be applied to the determination of crack arrest for a given applied load and a given defect or crack size. Compared to the other two methods mentioned above, this option has considerable advantages: It can be applied to any component and any stress ratio. It allows the treatment of multiple cracks and provides estimations of the S-N curve in the finite life regime as well as at the endurance limit. Compared to the empirical determination of the KT diagram, the experimental effort is significantly lower and compared to the El Haddad approach it avoids problems such as the use of non-conservative long fatigue crack propagation thresholds (when the conventional load reduction method is applied to materials prone to corrosion) and the mathematical predetermination of the curve shape. The work introduces the method and provides a critical discussion as well as quantitative comparison between the different methods. T2 - FATIGUE DESIGN 2021 CY - Online meeting DA - 17.11.2021 KW - Fatigue life KW - Endurance limit KW - Kitagawa-Takahashi diagram KW - Cyclic R-curve PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544931 DO - https://doi.org/10.1016/j.prostr.2022.03.032 SN - 2452-3216 VL - 38 SP - 309 EP - 316 PB - Elsevier B.V. AN - OPUS4-54493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -