TY - JOUR A1 - Schork, B. A1 - Zerbst, Uwe A1 - Kiyak, Yusuf A1 - Kaffenberger, M. A1 - Madia, Mauro A1 - Oechsner, M. T1 - Effect of the parameters of weld toe geometry on the FAT class as obtained by means of fracture mechanics-based simulations JF - Welding in the World N2 - The fracture mechanics-based IBESS approach is applied to the determination of FAT classes of butt welds with crack Initiation along the weld toe. The aim is an investigation of the effect of the geometrical parameters toe radius, flank angle, reinforcement and secondary notches such as roughness or undercuts. The influence of these parameters is discussed both individually and in combination; however, excluding statistical distributions of them and the material data. The results, when compared with conventional FAT classes for butt welds, are encouraging with respect to a potential contribution of IBESS to the discussion of more advanced quality criteria for welds. To that purpose, demands for further research are proposed. KW - Fracture mechanics KW - Weld toe geometry KW - Fatigue crack initiation KW - FAT class approach PY - 2020 DO - https://doi.org/10.1007/s40194-020-00874-7 IS - 64 SP - 925 EP - 936 PB - Springer AN - OPUS4-53079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Beier, T. A1 - Schork, B. T1 - The IBESS model – Elements, realisation and validation JF - Engineering fracture mechanics N2 - The work presents the procedure developed within the German research project IBESS, which allows for the fracture mechanics-based prediction of the fatigue strength of welded joints under constant amplitude loading. Based on the experimental observations of the crucial failure mechanisms, the approach focuses on the short crack propagation, where elastic-plastic fracture mechanics and the build-up of closure effects must be considered as well as the variability of the local geometry at the weld toe and the modelling of multiple crack interaction. Analytical solutions are provided for the approximation of the through-thickness stress profiles at the weld toe and for the determination of the crack driving force in the form of a plasticity-corrected stress intensity factor range ∆K_p. Proposals for the determination of the initial crack size and the crack closure factor are also included. The approach is validated against a large number of experimental data, which comprises fatigue tests on individual cracks monitored by heat tinting and beach-marking techniques, as well as stress life curves. Three kinds of welded joints, two steels of significant different strengths and three stress ratios are considered. The results show that the procedure provides good estimations of the statistical distribution of the fatigue strength of welded joints both for the finite and infinite life regime. Furthermore, the predictions are compared with available benchmark data for structural steels. KW - Welded joints KW - Life prediction KW - Fatigue crack growth KW - Short cracks KW - Crack closure PY - 2018 DO - https://doi.org/10.1016/j.engfracmech.2017.08.033 SN - 0013-7944 SN - 1873-7315 VL - 198 SP - 171 EP - 208 PB - Elsevier AN - OPUS4-46852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Gerwien, Peter A1 - Kucharczyk, P. A1 - Münstermann, S. A1 - Schork, B. T1 - Fracture-mechanics-based prediction of the fatigue strength of weldments. Material aspects JF - Engineering fracture mechanics N2 - Any fracture mechanics based determination of the fatigue strength of weldments requires different input information such as the local weld geometry and material data of the areas the crack is passing through during its propagation. The latter is so far not a trivial task as the fatigue crack is usually initiated at the weld toe at the transition from the weld metal to the heat affected zone and it subsequently propagates through the different microstructures of the latter to eventually grow into the base material and to cause final fracture. This paper describes how the material input information has gained particularly for heat affected zone material by thermo-mechanically simulated material specimens for two steels of quite different static strength. The data comprise the cyclic stress-strain curve, the crack closure effect-corrected crack growth characteristics, long crack fatigue crack propagation thresholds, the dependency of the parameter on the crack length and monotonic fracture resistance. The substantial experimental effort was necessary for the validation exercises of the IBESS approach, however, within the scope of practical application more easily applicable estimating methods are required. For that purpose the paper provides a number of appropriate proposals in line with its check against the reference data from the elaborate analyses. KW - Heat affected zone KW - Cyclic stress-strain curve KW - Fatigue crack propagation KW - Fatigue crack propagation threshold KW - Fracture resistance PY - 2018 DO - https://doi.org/10.1016/j.engfracmech.2017.09.010 SN - 0013-7944 SN - 1873-7315 VL - 198 SP - 79 EP - 102 PB - Elsevier AN - OPUS4-46854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Schork, B. A1 - Kaffenberger, M. A1 - Oechsner, M. A1 - Kucharzcyk, P. A1 - Hensel, J. A1 - Bernhard, J. A1 - Tchuindjang, D. T1 - The effect of the local and global weld geometry as well as material defects on crack initiation and fatigue strength JF - Engineering Fracture Mechanics N2 - The paper provides an application of the IBESS approach to the investigation of the influence of various parameters of the global and local weld geometry as well as material defects on the fatigue strength of weldments. For this purpose, the global weld parameters, such as the weld toe radius, the flank angle, the excess weld metal, local secondary notches (in the present study as a measure of surface imperfections) and inclusions sizes have been determined as statistical distributions for different joint types and geometries and two steels of different strengths. The results are in line with literature data and reveal the potential of the theoretical approach to predict the correct trends. The combination with an advanced weld quality system has been demonstrated to be possible. KW - Weldments KW - Fatigue strength KW - Fracture mechanics KW - Weld geometry KW - Inclusions KW - Multiple crack initiation PY - 2018 DO - https://doi.org/10.1016/j.engfracmech.2017.07.001 SN - 0013-7944 SN - 1873-7315 VL - 198 SP - 103 EP - 122 PB - Elsevier AN - OPUS4-46858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -