TY - CONF A1 - Weber, Mike A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Zencker, Uwe T1 - Numerical approach to determine the correct puncture bar length for the IAEA puncture bar drop test T2 - Proceedings-CD ASME 2018 Pressure Vessels & Piping Conference (PVP2018) N2 - Among other mechanical tests the 1 meter drop onto a steel puncture bar shall be considered for accident safe packages for the transport of radioactive material. According with the IAEA regulations “the bar shall be of solid mild steel of circular section, 15.0 ± 0.5 cm in diameter and 20 cm long, unless a longer bar would cause greater damage…”. The most damaging puncture bar length can be estimated by iterative processes in numerical simulations. On the one hand, a sufficient puncture bar length has to guarantee that shock absorbers or other attachments do not prevent or reduce the local load application to the package, on the other hand, a longer and thus less stiff bar causes a smaller maximum contact force. The contrary influence of increasing puncture bar length and increasing effective drop height shall be taken into account if a shock absorber is directly placed in the target area. The paper presents a numerical approach to identify the bar length that causes maximum damage to the package. Using the example of two typical package masses the sensitivity of contact forces and puncture bar deformations to the initial length are calculated and assessed with regard to the international IAEA package safety requirements. T2 - ASME Pressure Vessels and Piping Conference 2018 CY - Prague, Czech Republic DA - 15.07.2018 KW - Length of puncture bar KW - Mechanical assessment KW - Numerical simulation KW - Puncture bar test KW - Transport of radioactive materials PY - 2018 SP - PVP2018-84614, 1 EP - 7 AN - OPUS4-46538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -