TY - CONF A1 - Weber, Mike A1 - Zencker, Uwe A1 - Wolff, Dietmar A1 - Völzke, Holger A1 - Herbrich, Uwe A1 - Nagelschmidt, Sven T1 - Numerical analysis of cask accident scenarios in storage facilities N2 - Existing spent nuclear fuel (SF) and high active waste (HAW) management policies and practices worldwide are the result of past presumptions that sufficient reprocessing and/or disposal capacity would be available in the near term. Consequently, in the past many countries have developed specific solutions for different periods of time due to their individual national nuclear policies. In Germany the concept of dry interim storage in dual purpose metal casks before disposal is being pursued for SF and HAW management and transport and storage licenses have been issued accordingly. The current operation licenses for existing storage facilities have been granted for a storage period of up to 40 years. This concept has demonstrated its suitability for over 20 years so far. Relevant safety requirements have been assessed for the short-term as well as for the long-term for site-specific operational and accidental storage conditions. But in the meantime significant delays in the national repository siting procedure occurred which will make extended storage periods necessary in the future. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 KW - Numerical analysis KW - Interim storage KW - Cask accident scenario PY - 2013 SP - Session H, Paper 202, 1 EP - 9 PB - Omnipress AN - OPUS4-30227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zencker, Uwe A1 - Wolff, Dietmar A1 - Völzke, Holger A1 - Herbrich, Uwe A1 - Nagelschmidt, Sven T1 - Numerical analysis of cask accident scenarios in storage facilities N2 - Mechanical drop test scenarios for Type B (U) packages according to the IAEA regulations have to be carried out onto the so-called “unyielding target” (usually with cask impact limiters) and onto the puncture bar respectively. They are predefined and do not require any further investigation of scenarios that really could happen on transportation routes. Cask accident scenarios in the framework of approval procedures for interim storage sites are derived from a detailed analysis of the handling procedures necessary from arrival of cask at the site to its storing position. In that case, casks are usually handled without impact limiters. Dependent on possible drop heights, drop positions and floor properties, conservative cask accident scenarios are derived for further safety proofs. According to the mechanical assessment concept of the considered approval procedure numerical calculations have to be provided by the applicant to demonstrate mechanical cask safety. Stresses and strains in the cask body as well as in the lid System have to be identified and assessed. Using the example of a 3-mvertical-drop of a transport and storage cask for spent fuel elements onto the floor construction made of damping concrete covered by screed, BAM developed a finite element model. The finite element code ABAQUS/Explicit™ was used. Results of experimental investigations are not available. Therefore parameter studies are necessary to identify the sensitivity of the finite element model to significant Parameters and to verify the finite element models according to the requirements of the Guidelines for the Numerical Safety Analyses for the Approval of Transport and Storage Casks for Radioactive Materials (BAM GGR-008). The paper describes the modeling of the material behavior and attachment of bottom side cask components. Questions concerning the modeling of a crack length limiting reinforcement in the screed layer are discussed. The influence of the mesh density of the screed layer and its strength is considered as well. Finally, the developed finite element model can be used for a numerical safety assessment. It can help to understand the complex mechanisms of the interaction between the cask components and floor construction. T2 - WM2014 Conference CY - Phoenix, Arizona, USA DA - 02.03.2014 KW - Numerical analysis KW - Interim storage KW - Cask accident scenario PY - 2014 SN - 978-0-9836186-3-8 SP - Paper 14541, 1 EP - 12 AN - OPUS4-31516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiao, Linan A1 - Nagelschmidt, Sven A1 - Herbrich, Uwe A1 - Keller, Christian T1 - Introduction of a Power Law Time-Temperature Equivalent Formulation for the Description of Thermorheologically Simple and Complex Behavior N2 - Abstract: In this work, a conceptual framework is suggested for analyzing thermorheologically simple and complex behavior by using just one approach. Therefore, the linear relation between master time and real time which is required in terms of the time-temperature superposition principle was enhanced to a nonlinear equivalent relation. Furthermore, we evaluate whether there is any relation among well-known existing time-temperature equivalent formulations which makes it possible to generalize different existing formulations. For this purpose, as an example, the power law formulation was used for the definition of the master time. The method introduced here also contributes a further framework for a unification of established time-temperature equivalent formulations, for example the time-temperature superposition principle and time-temperature parameter models. Results show, with additional normalization conditions, most of the developed time-temperature parameter models can be treated as special cases of the new formulation. In the aspect of the arrow of time, the new defined master time is a bended arrow of time, which can help to understand the corresponding physical meaning of the suggested method. KW - bended arrow of time KW - time-temperature superposition principle KW - time-temperature equivalent formulation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543800 DO - https://doi.org/10.3390/ma15030726 VL - 15 IS - 3 SP - 1 EP - 11 PB - MDPI AN - OPUS4-54380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiao, Linan A1 - Nagelschmidt, Sven A1 - Herbrich, Uwe T1 - Application of a Modified Arrhenius Equation to Describe the Time-Temperature Equivalence in Relaxation Analysis of Metal Seals N2 - For the application of the time-temperature superposition principle a suitable relation is needed to describe the time-temperature shift factor α. Therefore, the Arrhenius equation is widely used due to its simple form and often leads to suitable results. Where, the Arrhenius equation presents a linear relation for the temperature-dependent shift factor in logarithmic scale ln(α) with the absolute inverse temperature (1/ϑ). However, in cases with a large temperature range which eventually include more complex reaction processes, the functional relation between ln(α) and (1/ϑ) is nonlinear in the ‘Arrhenius plot’. In those cases, the monotone change of the nonlinear range in the ‘Arrhenius plot’ can be interpreted as a transient range between two approximately linear or constant regions. An extended application of the modified Arrhenius equation from Nakamura (1989) is presented in this study for this transient range. The introduced method was applied to describe the time-temperature equivalence in the relaxation analysis of restoring seal force of metal seals, which are used in lid-systems of transport and interim storage casks for radioactive materials. But, the method is widely valid and can be used for different objectives which are characterized by thermorheologically simple behavior with nonlinear sensitivity to inverse temperature. KW - Metal seals KW - TTS principle KW - Arrhenius equation KW - Non-linear Arrhenius behavior KW - Relaxation analysis KW - Seal force PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-446759 UR - http://www.davidpublisher.org/index.php/Home/Article/index?id=33931.html DO - https://doi.org/10.17265/1934-7359/2017.09.004 SN - 1934-7359 VL - 11 IS - 9 SP - 853 EP - 861 PB - David Publishing Company CY - USA, NY 10989, Valley Cottage AN - OPUS4-44675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiao, Linan A1 - Herbrich, Uwe A1 - Nagelschmidt, Sven T1 - Describing Relaxation Behavior of Metal Seals Using Time-Temperature Superposition Principle N2 - In order to study the time- and temperature-dependent long-term behavior of metal seals, experimental investigations on special metal seals have been carried out at five different temperatures in a temperature range between 20 and 150°C for more than 7 years. Experimental results indicate a noticeable change of relevant sealing properties like seal force and usable resilience depending on time and temperature. In this study, the metal seals are treated as a homogeneous material block so that the identified decrease in seal force can be treated as a material relaxation effect. For the time-dependent behavior of seal force, an enhanced power-law model is introduced for the first time and is compared with the currently used power-law model. Additionally, regarding the influence of temperature, the timetemperature superposition principle is applied to metal seals for the first time with a clearly defined process. Thus, possible mistakes in the application of principle could be avoided. The introduced method is widely available for different applications regarding effects the principle with time and temperature. KW - Metal seals KW - Relaxation KW - Thermo-viscoplasticity KW - Time-temperature superposition PY - 2018 UR - https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0001424 DO - https://doi.org/10.1061/(ASCE)EM.1943-7889.0001424 SN - 0733-9399 VL - 144 IS - 4 SP - 04018016-1 EP - 04018016-8 PB - American Society of Civil Engineers AN - OPUS4-44676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nagelschmidt, Sven A1 - Herbrich, Uwe A1 - Probst, Ulrich A1 - Wolff, Dietmar ED - Van Breugel, K. ED - Koenders, E.A.B. T1 - Evaluation of test results with regard to ageing mechanisms of metal seals in casks for dry storage of spent nuclear fuel N2 - Metal seals are widely used for extreme applications, e.g. in dual-purpose casks for dry interim storage of spent nuclear fuel in Germany. Due to the fact that interim storage must be safe at least for the approved period of 40 years there is a major interest to investigate the long-term behaviour and ageing mechanisms of metal seals. Experimental analyses indicate a time and temperature dependency of seal characteristics. This dependency was researched with a time- and temperature parameterization based up on Larson-Miller. The paper describes the derivation of the material parameter C from test results and the applicability of the Larson-Miller-Relationship for those metal seals in principle. Overall a constant material parameter C was not. Nevertheless, an approach comparable to the Larson-Miller-Parameter was developed. T2 - 1st Ageing of materials & structures 2014 conference CY - Delft, The Netherlands DA - 26.05.2014 KW - Metal seal KW - Ageing KW - Larson-Miller-Parameter KW - Aluminium KW - Silver KW - Larson and Miller relationship KW - Casks KW - Spent fuel PY - 2014 SN - 978-94-6186-313-3 SP - 126 EP - 133 AN - OPUS4-30821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nagelschmidt, Sven A1 - Herbrich, Uwe A1 - Qiao, Linan T1 - Applicability of developed calculation models to predict long-term behavior of metal seals – Necessary scope of tests N2 - The long-term sealing behavior of metal seals, assembled in the lid system of casks for transportation and storage of radioactive materials, has been investigated. For that purpose, phenomenological models describing the time- and temperature dependent behavior have been introduced by BAM since 2016, e.g. by using the time-temperature superposition principle. Results have shown that these models describe the relaxation behavior adequately and are suitable for extrapolations. In this work, the applicability of these models is checked by analyzing the necessary scope of tests, which must be carried out to get sufficient information about the long-term behavior of metal seals based on short-term tests. T2 - Waste Management Conference CY - Phoenix, Arizona, USA DA - 03.03.2019 KW - Metal seal KW - Time-temperature superposition principle KW - Transportation and storage cask KW - Long-term interim storage PY - 2019 SP - 19311, 1 EP - 6 AN - OPUS4-48353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Christian A1 - Herbrich, Uwe T1 - Plastic Instability of Rate-Dependent Materials - A Theoretical Approach in Comparison to FE-Analyses - N2 - The condition for plastic instability is a material characteristic and defines the onset of necking in tensile tests. In large deformation problems of ductile materials it is fundamental to determine the strain at which necking starts as well as the post-necking behaviour in the instability region properly. For verification purposes of material models, usually results of numerical analyses are compared to experimental outcomes. For tensile tests with ductile materials under dynamic loading, it is challenging to obtain comparable experimental and numerical results in terms of the onset of necking and the post-critical deformation behaviour. This paper focuses on the derivation of a theoretical criterion describing the plastic instability in rate-dependent materials based on the time variation of the strain gradient in a tensile specimen under isothermal conditions. We examine the influence of various constitutive equations on the theoretical stability condition predicted by different multiplicative as well as additive approaches. For multiplicative relations, the results indicate that the onset of necking is, in principle, independent of the strain rate, whereas for the considered additive relation, the dynamic necking strain must decrease with increasing strain rate. In conclusion, the theoretical stability condition is related to results from finite element simulations of dynamic tensile tests with various loading rates. It is shown that the simulated and the theoretical predicted onset of plastic instability agree reasonably. T2 - 11th European LS-DYNA Conference CY - Salzburg, Austria DA - 09.05.2017 KW - FEM KW - Plastic Instability KW - Dynamic Tensile Test PY - 2017 UR - http://www.dynalook.com/11th-european-ls-dyna-conference/crash-metal-failure/plastic-instability-of-rate-dependent-materials-a-theoretical-approach-in-comparison-to-fe-analyses SP - 1 EP - 10 AN - OPUS4-40660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herbrich, Uwe A1 - Nagelschmidt, Sven A1 - Weber, Wolfgang A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Die sicherheitstechnische Behälterbegutachtung für die trockene Zwischenlagerung bestrahlter Brennelemente aus Sicht der BAM T2 - Jahrestagung Kerntechnik 2013 CY - Berlin, Germany DA - 2013-05-14 PY - 2013 SP - 1 EP - 6(?) AN - OPUS4-28585 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herbrich, Uwe A1 - Nagelschmidt, Sven A1 - Weber, Wolfgang A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Die sicherheitstechnische Behälterbegutachtung für die trockene Zwischenlagerung bestrahlter Brennelemente aus Sicht der BAM T2 - Jahrestagung Kerntechnik 2013 CY - Berlin, Germany DA - 2013-05-14 PY - 2013 AN - OPUS4-28547 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -